3 RD QUARTER 2006 DATA REPORT

PCB MOBILITY AND MIGRATION INVESTIGATION

SOLUTIA INC. W.G. KRUMMRICH FACILITY SAUGET, ILLINOIS

Prepared for Solutia Inc. 575 Maryville Centre Dr St. Louis, Missouri 63141

January 19, 2007

URS

URS Corporation 1001 Highland Plaza Drive West, Suite 300 St. Louis, MO 63110 (314) 429-0100 **Project # 21561640**

1.0	INTROD	JCTION1
2.0	FIELD PI	ROCEDURES1
3.0	LABORA	TORY PROCEDURES3
4.0	QUALITY	/ ASSURANCE3
5.0	OBSERV	ATIONS3
6.0	REFERE	NCES5
List of	Figures	
Figure Figure Figure Figure Figure	2 3 4 5	Site Location Map Former PCB Manufacturing Area Monitoring Well Locations Potentiometric Surface Map – Shallow Hydrogeologic Unit Potentiometric Surface Map – Middle Hydrogeologic Unit PCB and Total Chlorobenzene Results – SHU Wells PCB and Total Chlorobenzene Results – MHU Wells
List of	Tables	
Table 1 Table 2		Monitoring Well Gauging Information Groundwater Analytical Detections
List of	Appendic	es
Append Append Append Append	dix B dix C	Groundwater Purging and Sampling Forms Chains-of-Custody Quality Assurance Report Groundwater Analytical Results

1.0 INTRODUCTION

Solutia Inc. (Solutia) is conducting groundwater monitoring activities as outlined in the PCB Mobility and Migration Investigation Work Plan (Solutia, 2005). This report presents the results of the 3rd Quarter 2006 (3Q06) sampling event as part of the Phase III Site Investigation. This is the second sampling event for the well network. Solutia intends to submit data reports, such as this one, for the quarterly events that make up the two-year baseline monitoring period (2Q06 to 1Q08). The site location map is presented on **Figure 1**.

The monitoring well network consists of eight monitoring wells as follows:

- Two wells located in the source area, PMA-MW-4S and PS-MW-2, which are screened in the Shallow Hydrogeologic Unit (SHU) and Middle Hydrogeologic Unit (MHU), respectively.
- Three well clusters that are downgradient of the source area and outside of the 25 mg/kg total PCB isoconcentration line in soil, PMA-MW-1S/M, PMA-MW-2S/M and PMA-MW-3S/M, These clusters include wells screened in the SHU (designated with an "S") and MHU (designated with an "M").

The wells have 5 foot long screens. SHU wells are screened from approximately el. 390 to 385 NGVD and MHU wells are screened from approximately el. 355 to 350 NGVD (**Table 1**).

Groundwater samples were obtained from a total of seven monitoring wells during the 3rd quarter. Monitoring well PMA-MW-4S was not sampled due to the presence of dense non-aqueous phase liquid (DNAPL). The sample from well PSMW-2 was collected during the Plume Stability Monitoring Program and the results are also included in this report. Laboratory data sheets and relevant field sampling information for this well are included in the 3Q06 Plume Stability Monitoring Program Data Report.

The monitoring well locations are shown on **Figure 2.** The field sampling activities were conducted in accordance with the procedures outlined in the PCB Mobility and Migration Investigation Work Plan including the collection of appropriate quality assurance and quality control (QA/QC) samples. The following section summarizes the field investigative procedures.

2.0 FIELD PROCEDURES

URS Corporation (URS) conducted the 3Q06 field activities on August 30th (groundwater level measurements) and September 13th through 15th, 2006 (groundwater quality sampling).

Groundwater Level Measurements- Static groundwater levels and total well depths were measured and the presence of non-aqueous phase liquids was evaluated on August 30, 2006 using an oil/water interface probe at the well locations. Well gauging information for the 3Q06 event is presented in **Table 1**. Monitoring well PMA-MW-4S had a measured DNAPL thickness of 0.52 ft. Groundwater potentiometric surface maps of the SHU and MHU are presented on **Figures 3** and **4**, respectively.

January 19, 2007 Page 1

Groundwater Quality Sampling - Low-flow sampling techniques were used for groundwater sample collection. At each monitoring well, a submersible pump attached to polyethylene tubing was slowly lowered down the well and secured so that the pump intake was set near the middle or slightly above the middle of the screened interval. The other end of the polyethylene tubing was connected to a flow-through cell which discharged into a 5-gallon plastic bucket. Pump flow rates were started at approximately 100ml/min and increased to a maximum of 500 ml/min during purging. Water level measurements were initially recorded approximately every two minutes to assess whether significant drawdown was occurring. If significant drawdown occurred, the flow rates were scaled back. Drawdown was monitored to ensure that it did not exceed 25% of the distance between the pump intake and the top of the screen (approximately 0.62 ft). Once the flow rate and drawdown were stable, field measurements were collected approximately every three to five minutes. Field measurements are presented on the groundwater purging and sampling forms, in Appendix A. Groundwater was considered stable when the following criteria were met over a minimum of three successive flow-through cell volumes:

pH - ± 0.2 units
 Specific Conductance - ± 3%

Dissolved Oxygen (DO)
 ± 10% or ± 0.2 mg/L whichever is greater

Oxidation-Reduction Potential (ORP) ± 20 mV

Once stabilization was achieved, samples were collected in the following order:

- Volatile Organic Compounds (VOCs)
- Semivolatile Organic Compounds (SVOCs)
- Polychlorinated biphenyls (PCBs), filtered and unfiltered (field filtered using a 0.45 micron filter)

QA/QC samples consisting of analytical duplicates (DUP) and equipment blanks (EB) were collected at a rate of 10% and matrix spike/matrix spike duplicates (MS/MSD) were collected at a rate of 5%, complying with the work plan. In addition, trip blanks accompanied each shipment containing samples for VOC analysis. All samples were submitted to Severn-Trent Laboratory (STL) facility in Savannah, Georgia, for analysis.

The sample identification system for groundwater samples included the following nomenclature "PMA2S-0906" which denotes PCB Manufacturing Area monitoring well number 2S sampled in September 2006. QA/QC samples are identified by the suffix DUP, EB or MS/MSD.

Field personnel recorded the project identification and number, sample description/location, required analysis, date and time of sample collection, type and matrix of sample, number of sample containers, analysis requested/comments, and sampler signature/date/time, with permanent ink on the chain-of-custody (COC). COC forms are included in **Appendix B**

Samples were placed on ice inside a cooler immediately following sampling. Courier service was provided by STL's facility in Earth City, Missouri. Sample containers were packed in such a way as to

January 19, 2007 Page 2

help prevent breakage. Samples were shipped in coolers, each containing ice to maintain inside temperature at approximately 4°C. Sample coolers were sealed between the lid and sides of the cooler with a custody seal prior to shipment. The samples were shipped to the STL facility in Savannah, Georgia by means of an overnight delivery service.

3.0 LABORATORY PROCEDURES

Samples were analyzed by STL for the 40 CFR 264 Appendix IX VOCs, SVOCs, PCBs, using the following methodologies:

- VOCs, via Method 8260B
- SVOCs, via Method 8270C
- PCBs, via Method 680

4.0 QUALITY ASSURANCE

Analytical data were reviewed for quality and completeness as described in the PCB Mobility and Migration Investigation Work Plan. Data qualifiers were added, as appropriate, and are included on the data tables and the laboratory result pages. The Quality Assurance report is included as **Appendix C**. Laboratory result pages are included in **Appendix D**.

A total of 13 samples (seven investigative groundwater samples, one field duplicate, one MS/MSD pair, one equipment blank and two trip blanks) were prepared and analyzed by STL for combinations of VOCs, SVOCs and PCBs. The results for the various analyses were submitted as sample delivery group (SDG) KPM003.

Evaluation of the analytical data followed procedures outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, 1999 and the PCB Mobility and Migration Investigation Work Plan, 2005. Based on the above mentioned criteria, results reported for the analyses performed were accepted for their intended use. Acceptable levels of accuracy and precision, based on MS/MSD, LCS, surrogate and field duplicate data were achieved for this SDG to meet the project objectives. Completeness, which is defined to be the percentage of analytical results which are judged to be valid, including estimated (J/UJ) data was 100 percent.

5.0 OBSERVATIONS

This section presents a brief summary of the groundwater analytical results from the 3Q06 sampling event. Nine VOCs (benzene; chlorobenzene; chloroform; 1, 2-dichlorobenzene; 1,3-dichlorobenzene; 1,4-dichlorobenzene; ethylbenzene, toluene and total xylenes), three SVOCs (p-chloroaniline, phenol and 2-toluidene) and two PCBs (monochlorobiphenyl and dichlorobiphenyl) were detected in groundwater samples collected from PCB Mobility and Migration Investigation Monitoring Wells PMAMW-1S/M, PMAMW-2S/M, PMAMW-3S/M and PSMW-2 (**Table 2**).

January 19, 2007 Page 3

Benzene, chlorobenzene and Total PCBs were the only constituents detected in all of these monitoring wells. Consequently, these constituents were chosen to evaluate groundwater migration from the Former PCB Manufacturing Area in the Shallow and Middle Hydrogeologic Units.

Shallow Hydrogeologic Unit - No sample was collected from PMAMW-4S because 0.52 ft of DNAPL was present in the bottom of this well. Sampling under these conditions could result groundwater quality analytical results that were biased high. During the Phase I Site Investigation, a composite DNAPL sample was collected from four temporary sampling wells installed at the Former PCB Manufacturing Area. Total PCBs were present at a concentration of 107,996 mg/Kg in this May 2006 sample.

No PCBs were detected in two of three downgradient PCB Mobility and Migration monitoring wells (PMAMW-1S and PMAMW-2S) while monochlorobiphenyl was detected at a concentration of 0.32 ug/L in the third downgradient monitoring well (PMAMW-3S). These data indicate that PCBs in the Shallow Hydrogeologic Unit attenuated over the 300 to 400 ft distance between PMAMW-4S and the three downgradient monitoring wells.

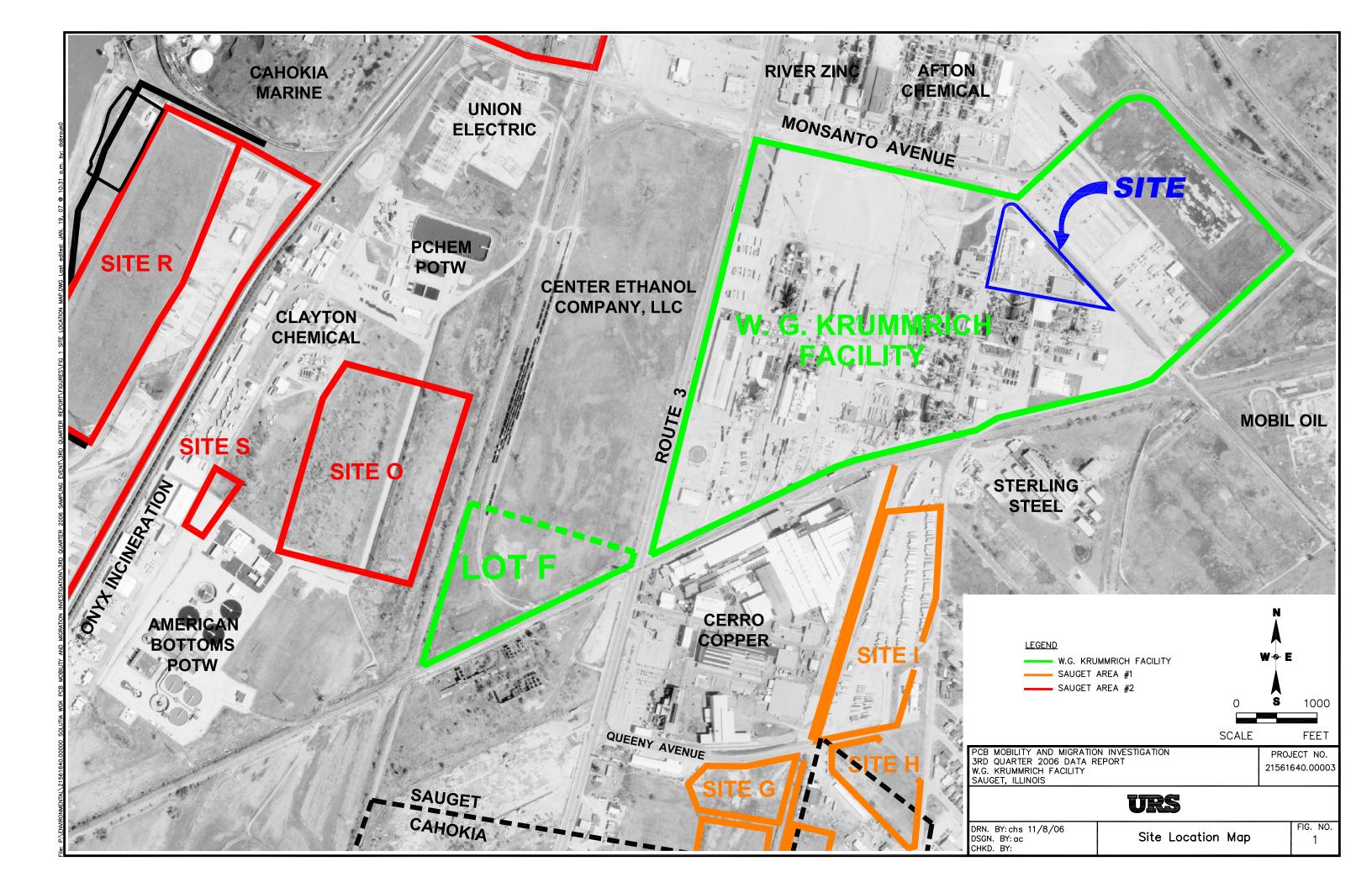
No PCBs were detected in the filtered sample from PMAMW-3S indicating that the monochlorobiphenyl detected in the unfiltered sample was the result of PCB entrainment on investigation-derived solids or transport on colloidal- sized particles. These data indicate that PCBs were not migrating in the dissolved phase even with a source area PCB DNAPL concentration of 107,996 mg/Kg.

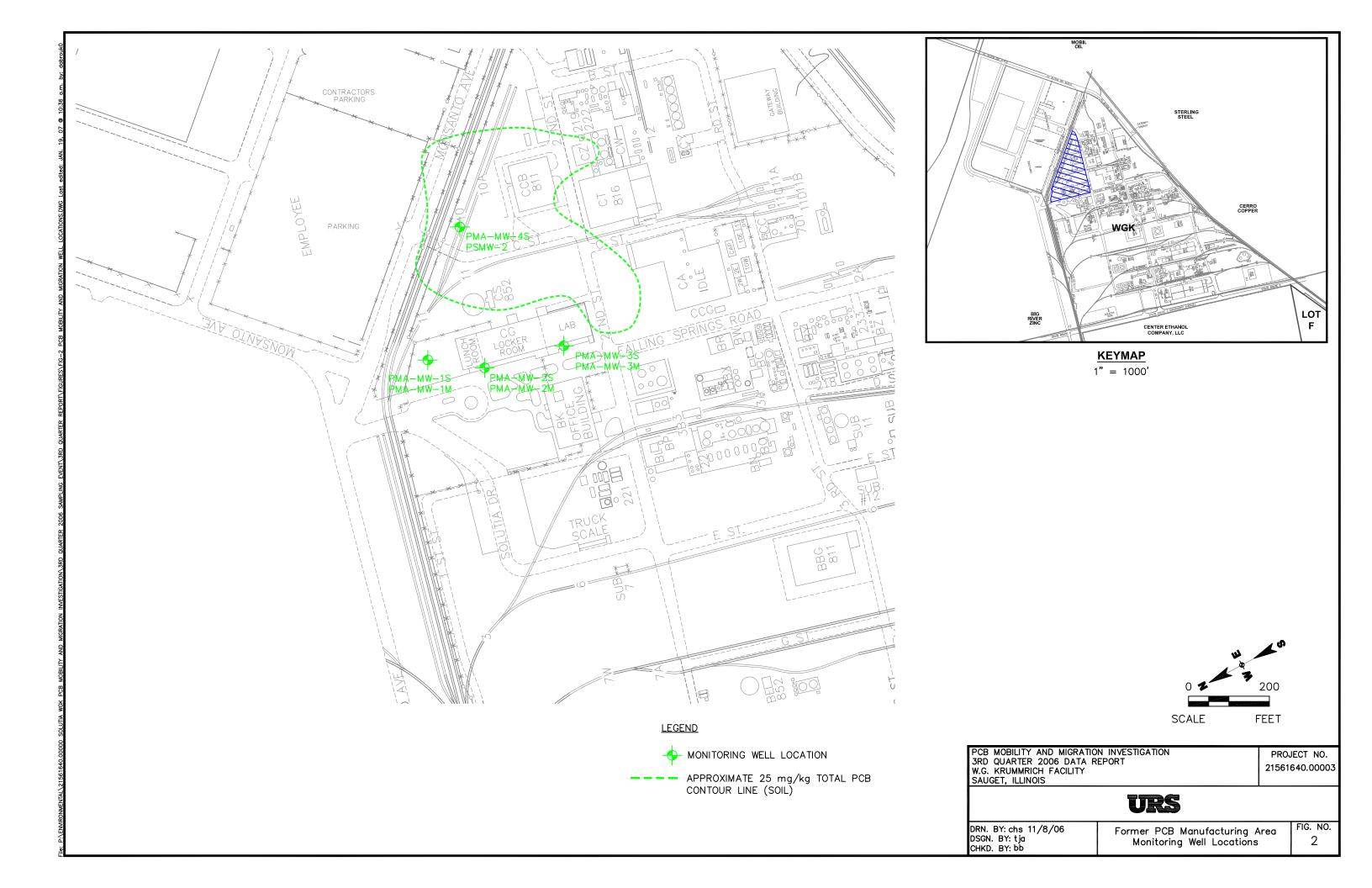
Benzene and chlorobenzene were detected in all three downgradient monitoring wells. Benzene was detected at concentrations of 12 ug/L, 16 ug/L and 250 ug/L, respectively, in PMAMW-1S, 2S and 3S while chlorobenzene was detected at concentrations of 2.2 ug/L, 1.1 ug/L and 1.8 ug/L.

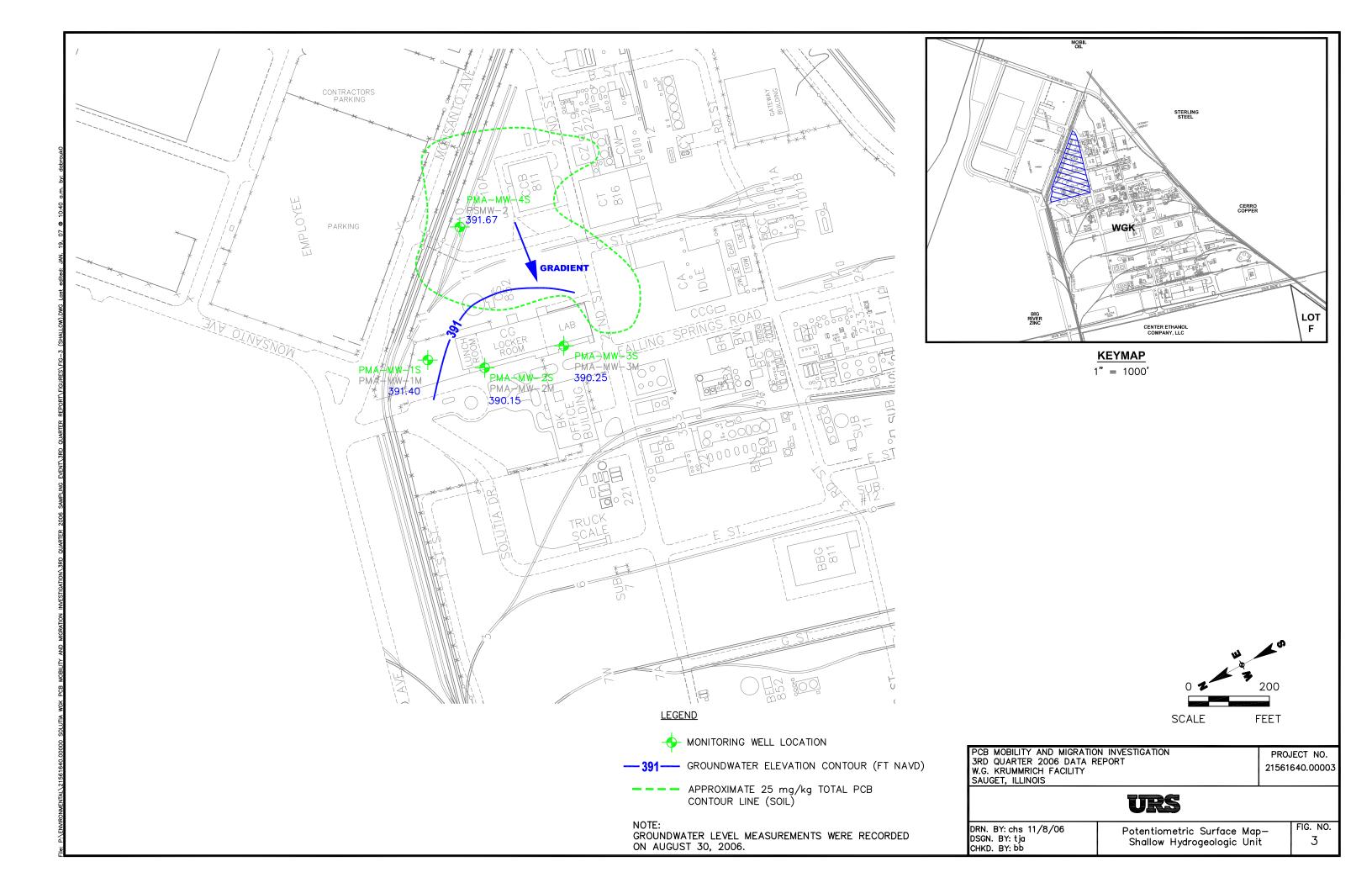
Middle Hydrogeologic Unit - Monochlorobiphenyl was detected at a concentration of 0.1 ug/L in PCB Mobility and Migration Monitoring Well PSMW-2, which is located adjacent to PMAMW-4S in the Former PCB Manufacturing Area. Total PCBs were detected in all three downgradient monitoring wells at concentrations of 0.24 ug/L (PMAMW-1M), 2.4 ug/L (PMAMW-2M) and 1.94 ug/L (PMAMW-3M). With source area DNAPL concentrations of 107,996 mg/Kg of Total PCBs, these data indicate that PCB migration was attenuated as recharge from the SHU reached the MHU and migrated to the three downgradient monitoring wells.

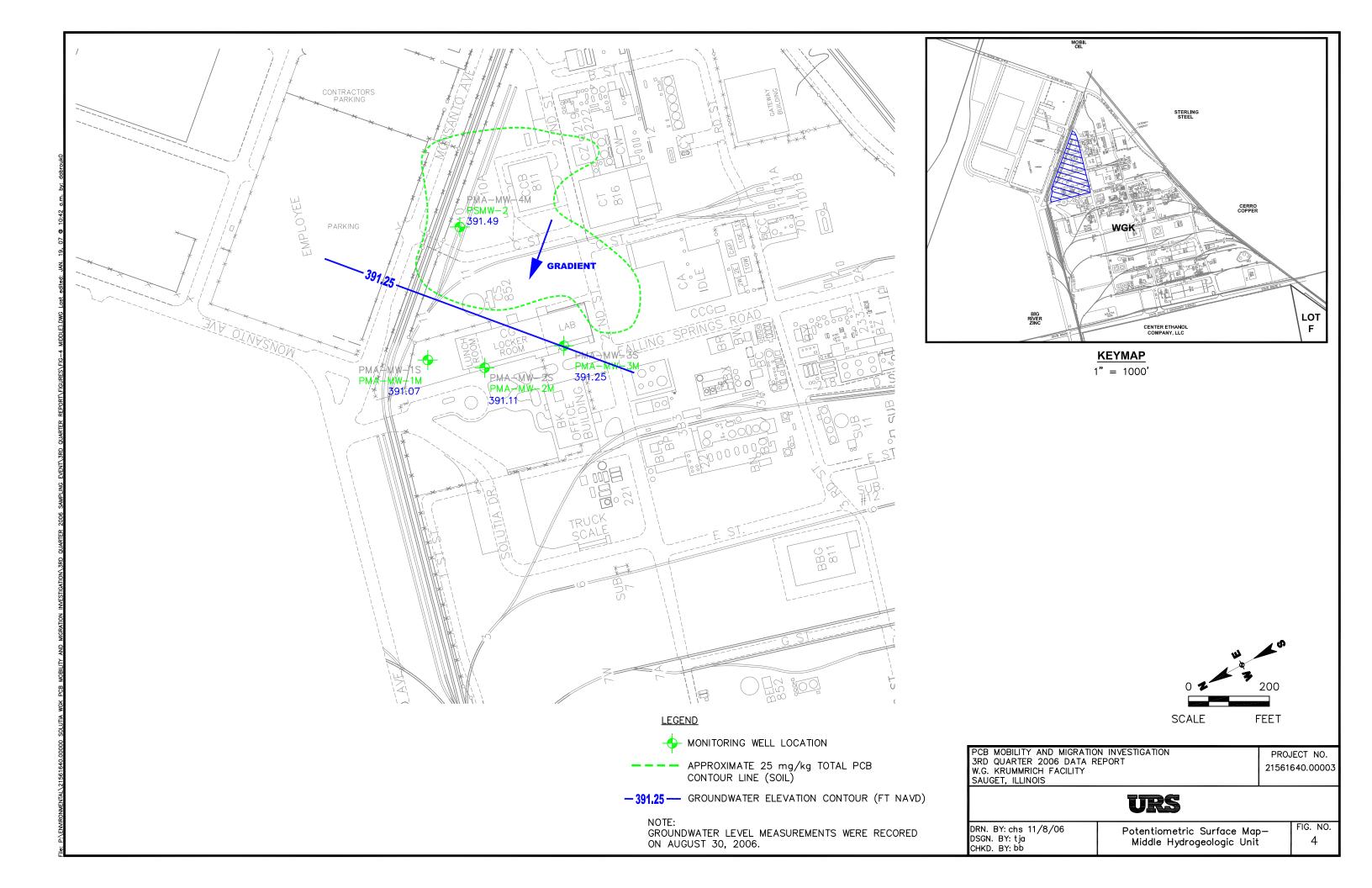
No PCBs were detected in the filtered samples from all four monitoring wells indicating that the PCBs detected in the unfiltered samples were the result of PCB entrainment on investigation-derived solids or transport on colloidal-sized particles. These data indicate that PCBs were not migrating in the dissolved phase even though benzene and chlorobenzene were detected at maximum concentrations of 8,600 ug/L and 7,300 ug/L, respectively.

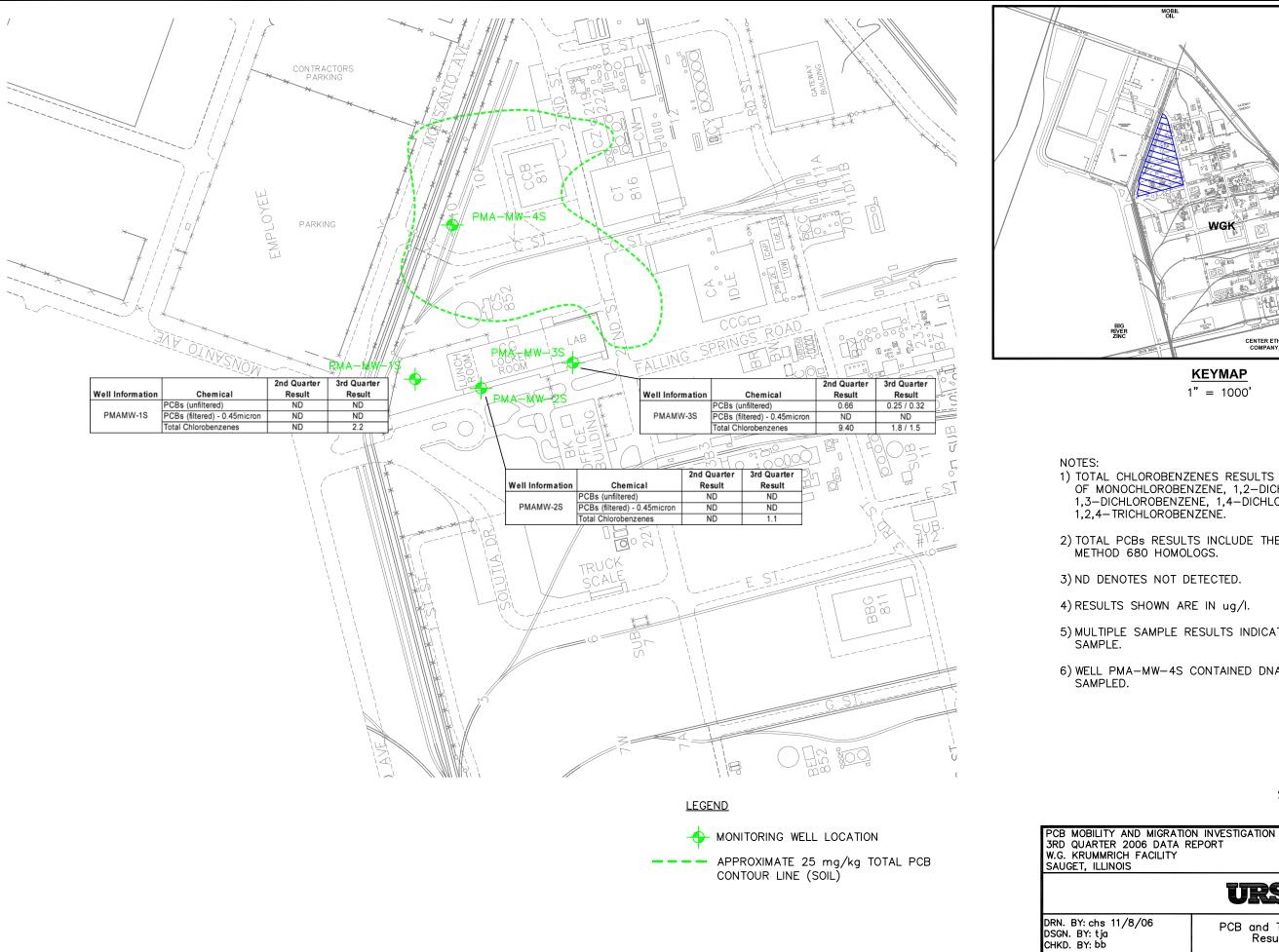
Benzene and chlorobenzene were detected at concentrations of 8,600 ug/L and 2,600 ug/L, respectively, in source area monitoring well PSMW-2. Benzene was detected at concentrations of 1,900 ug/L; 4,800 ug/L and 1,500 ug/L, respectively, in downgradient monitoring wells PMAMW-1M, 2M and 3M while chlorobenzene was detected at concentrations of 1,400 ug/L; 7,300 ug/L and 1,300 ug/L.

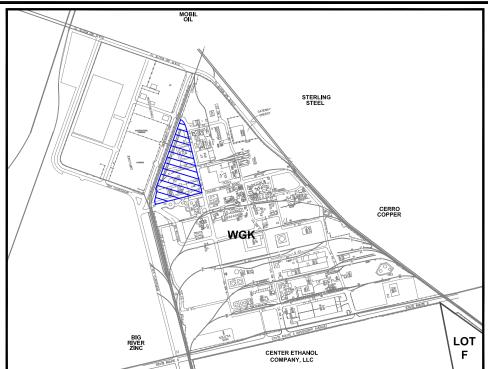

Figures 5 and **6** display the results for PCBs (unfiltered), PCBs (filtered-0.45 micron) and total chlorobenzenes for the 2Q06 and 3Q06 sampling events for the SHU and MHU, respectively. Data from the 3Q06 sampling event are generally consistent with the results from the 2Q06 sampling event (Solutia, 2006).

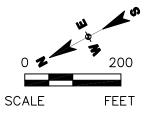

Solutia will continue to collect groundwater samples on a quarterly basis during the baseline monitoring period and will prepare reports similar to this.


6.0 REFERENCES


- U.S. Environmental Protection Agency (USEPA), 1999. Contract Laboratory Program National Functional Guidelines for Organic Data Review.
- Solutia Inc., 2005. PCB Mobility and Migration Investigation Plan, W.G. Krummrich Facility, Sauget, IL, Prepared by URS Corporation, October 2005.
- Solutia Inc., 2006. PCB Mobility and Migration Investigation 2nd Quarter 2006 Data Report, W.G. Krummrich Facility, Sauget, IL, Prepared by URS Corporation, October 2006.


Figures

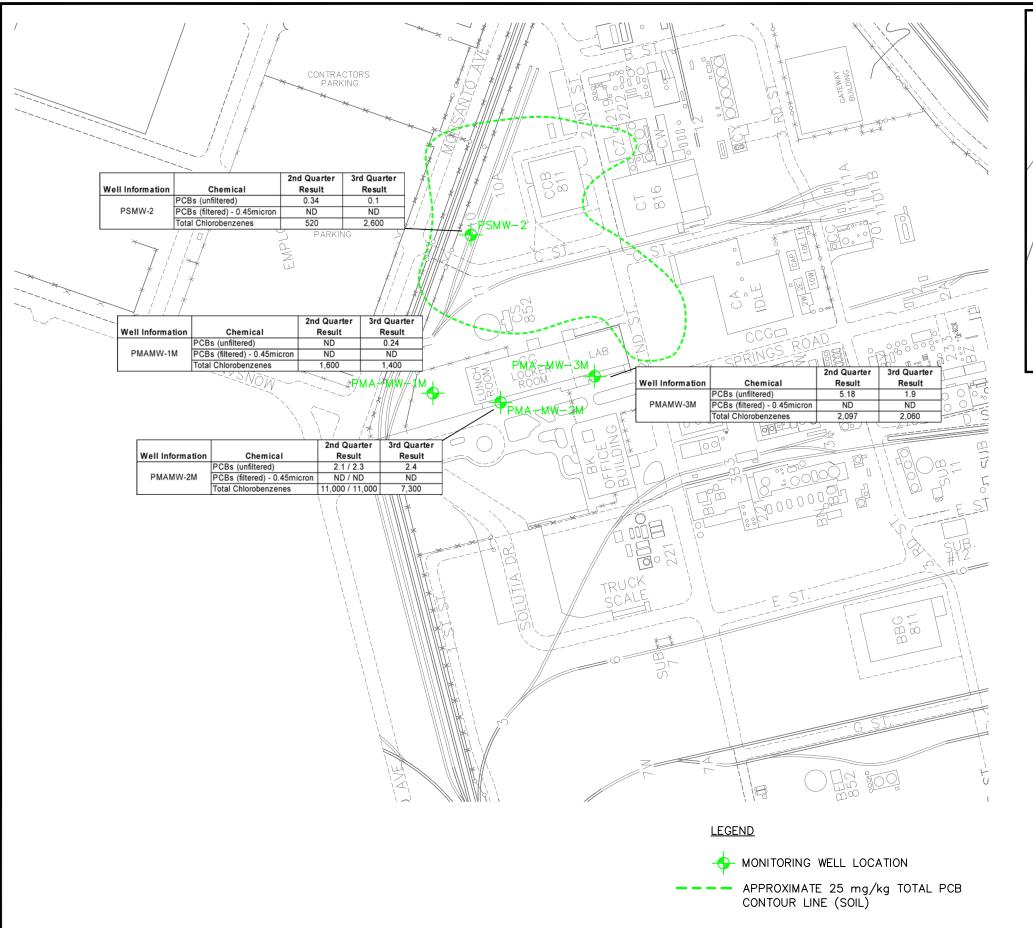


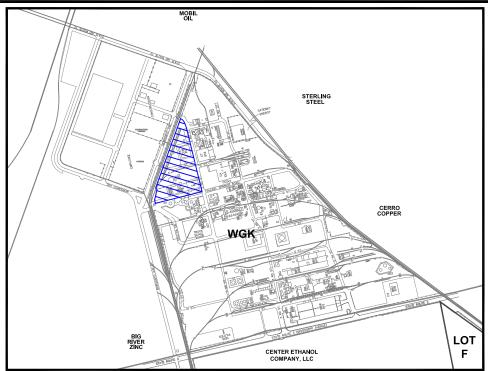


1" = 1000'

- 1) TOTAL CHLOROBENZENES RESULTS INCLUDE THE SUM OF MONOCHLOROBENZENE, 1,2-DICHLOROBENZENE, 1,3-DICHLOROBENZENE, 1,4-DICHLOROBENZENE, AND
- 2) TOTAL PCBs RESULTS INCLUDE THE SUM OF ALL

- 5) MULTIPLE SAMPLE RESULTS INDICATE A DUPLICATE
- 6) WELL PMA-MW-4S CONTAINED DNAPL AND WAS NOT

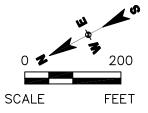



PROJECT NO. 21561640.00003

URS

PCB and Total Chlorobenzene Results—SHU Wells

FIG. NO.



 $\frac{KEYMAP}{1" = 1000'}$

NOTES:

- 1) TAL CHLOROBENZENES RESULTS INCLUDE THE SUM OF MONOCHLOROBENZENE, 1,2-DICHLOROBENZENE, 1,3-DICHLOROBENZENE, 1,4-DICHLOROBENZENE, AND 1,2,4-TRICHLOROBENZENE.
- 2) TOTAL PCBs RESULTS INCLUDE THE SUM OF ALL METHOD 680 HOMOLOGS.
- 3) ND DENOTES NOT DETECTED.
- 4) RESULTS SHOWN ARE IN ug/l.
- 5) MULTIPLE SAMPLE RESULTS INDICATE A DUPLICATE SAMPLE.

PCB MOBILITY AND MIGRATION INVESTIGATION
3RD QUARTER 2006 DATA REPORT
W.G. KRUMMRICH FACILITY
SAUGET, ILLINOIS

PROJECT NO. 21561640.00003

URS

DRN. BY: chs 11/8/06 DSGN. BY: tja CHKD. BY: bb PCB and Total Chlorobenzene Results—MHU Wells FIG. NO.

Tables

Table 1
Monitoring Well Gauging Information

			Consti	August 30, 2006								
Well ID	Ground Elevation (ft)* NAVD 88	TOC Elevation (ft)* NAVD 88	Screen	Bottom of Screen Depth (ft)**	Ton of Screen	Bottom of Screen Interval (Elevation) *	Depth to Water (ft) ***	Depth to Product (ft) ***	Depth to Bottom (ft)***	Water Elevation (ft)*		
Shallow Hydrogeologic Unit (SHU 395 - 380 ft NAVD)												
PMAMW-1S	410.30	410.06	19.90	24.90	390.40	385.40	18.66		24.90	391.40		
PMAMW-2S	412.27	411.66	22.33	27.33	389.94	384.94	21.51		27.33	390.15		
PMAMW-3S	412.37	412.06	22.40	27.40	389.97	384.97	21.81		27.40	390.25		
PMAMW-4S	411.09	410.43	20.33	25.33	390.76	385.76	18.76	24.81	25.33	391.67		
Middle Hydro	geologic U	nit (MHU 38	0 - 350 ft N	NAVD)					•			
PMAMW-1M	410.32	410.08	54.30	59.30	356.02	351.02	19.01		59.30	391.07		
PMAMW-2M	412.26	411.93	56.54	61.54	355.72	350.72	20.82		61.54	391.11		
PMAMW-3M	412.36	412.10	56.81	61.81	355.55	350.55	20.85		61.81	391.25		
PSMW-2	411.22	410.88	68.55	73.55	342.67	337.67	19.39		73.55	391.49		

Note:

- * Elevation based upon North American Vertical Datum (NAVD) 88 datum.
- ** Feet below ground surface.
- *** Depth is measured from top of casing (TOC).

Coordinates--State Plane 1983, Illinois West, NAD 1983

Table 2
Groundwater Analytical Detections

Sample ID	Sample	Chemical	Chemical	Result	Units	Lab	URS
DMA40.0000	Date	Group		1.00		Qualifiers	Qualifiers
PMA1S-0906 PMA1S-0906	9/15/06	VOCs	Benzene	12	ug/L		
	9/15/06	VOCs	Chlorobenzene	2.2	ug/L	i	
PMA1M-0906	9/15/06	VOCs	Benzene	1,900	ug/L		
PMA1M-0906	9/15/06	VOCs	Chlorobenzene	1,400	ug/L		
PMA1M-0906	9/15/06	PCBs	Monochlorobiphenyl	0.24	ug/L		
PMA2S-0906	9/14/06	VOCs	Benzene	16	ug/L		
PMA2S-0906	9/14/06	VOCs	Chlorobenzene	1.1	ug/L		
PMA2S-0906	9/14/06	VOCs	Chloroform	1.1	ug/L		
PMA2M-0906	9/14/06	VOCs	Benzene	4,800	ug/L	-	
PMA2M-0906	9/14/06	VOCs	Chlorobenzene	7,300	ug/L		
PMA2M-0906	9/14/06	SVOCs	P-Chloroaniline	100	ug/L		
PMA2M-0906	9/14/06	PCBs	Monochlorobiphenyl	2.4	ug/L		
PMA3S-0906	9/13/06	VOCs	Benzene	230	ug/L	D	
PMA3S-0906	9/13/06	VOCs	Chlorobenzene	1.8	ug/L		
PMA3S-0906	9/13/06	PCBs	Monochlorobiphenyl	0.25	ug/L		
PMA3S-0906-DUP	9/13/06	VOCs	Benzene	250	ug/L	D	
PMA3S-0906-DUP	9/13/06	VOCs	Chlorobenzene	1.5	ug/L		
PMA3S-0906-DUP	9/13/06	PCBs	Monochlorobiphenyl	0.32	ug/L	1	
PMA3M-0906	9/14/06	VOCs	1,2-Dichlorobenzene	110	ug/L		
PMA3M-0906	9/14/06	VOCs	1,3-Dichlorobenzene	50	ug/L		
PMA3M-0906	9/14/06	VOCs	1,4-Dichlorobenzene	600	ug/L		
PMA3M-0906	9/14/06	VOCs	Benzene	1,500	ug/L		
PMA3M-0906	9/14/06	VOCs	Chlorobenzene	1,300	ug/L	-	
PMA3M-0906	9/14/06	VOCs	Ethylbenzene	92	ug/L		
PMA3M-0906	9/14/06	VOCs	Toluene	16	ug/L		
PMA3M-0906	9/14/06	VOCs	Xylenes, Total	280	ug/L		
PMA3M-0906	9/14/06	PCBs	Dichlorobiphenyl	0.14	ug/L	· -	
PMA3M-0906	9/14/06	PCBs	Monochlorobiphenyl	1.8	ug/L		
PS2-0906	9/13/06	VOCs	Benzene	8,600	ug/L		
PS2-0906	9/13/06	VOCs	Chlorobenzene	2,600	ug/L		
PS2-0906	9/13/06	SVOCs	2-Toluidine	14	ug/L	· · ·	
PS2-0906	9/13/06	SVOCs	P-Chloroaniline	330	ug/L	D	J
PS2-0906	9/13/06	SVOCs	Phenol	26	ug/L		
PS2-0906	9/13/06	PCBs	Monochlorobiphenyl	0.1	ug/L		
PS2-0906	9/13/06	Metals	Barium	1.1	mg/L		

Notes:

D = Diluted sample

J = Estimated value

mg/L = milligrams per liter

ug/L = micrograms per liter

Appendix A Groundwater Purging and Sampling Forms

DATE: 9-15-	WGK PCB : Migration Study のく ELL ID: 🍄 PMAt ~	WEATHER	NUMBER: 21561 : 705 Swhr	640 Uf	FI	ELD PERSONNEL:	S. Moore F	M.Mille		
Screen Length:	oc): <u> </u>	If Depth to Top Place Pump at: If Depth to Top Place Pump at: If Screen Lengt	of Screen is < Depth Total Well Depth - (0.	to Water AND Scree 5 (Screen Length + to Water AND Wate 5 X Water Column	en Lenth is (4 feet, DNAPL Column Height er Column Height and S Height + DNAPL Colum ace Pump at: Total Wel	= 22.45 creen Length are (4ft, n Height) =	Mir ft btoc (3 Am	ume of Flow Throug nimum Purge Volume 3 x Flow Through Ce bient PID/FID Readi Ilbore PID/FID Readi	e = Volume)	mL ppm ppm
Purge Volume		Depth to				Temp	Cond.	Turbidity	DO.	CDD.
.5 gal	Time 4	今がWater (ft) /タス	Çolor	Odor	pН	(°C)	(ms/cm)	(NTUs)	DO (mg/l)	ORP (mv)
.5 gal	1045	319.4	St. Cloudy	29	6.75	20,80	1204	55	1.34	45.9
gue	1050	19.34 19.34 19.34 (9.34	0		6.59	20.08	1.354	27	1	40.7
1.5 gal	1055	19.34			6.40	19.96	1.380	17	0.72	29,0
2 gal	NDO	19.34			6.62	20.16	7.38/	9.9	07/	33.2
215 9~	1(05	(9.34			6-63	20.18	1, 372	8.3	0.63	3/8
3.0 gal	1110	19.34	L 4	4	6.64	20.18	1,380	72	0.63	31.8
			<u>'</u>						<u> </u>	100.0
 										<u> </u>
		· · · · · · · · · · · · · · · · · · ·								
									<u> </u>	
		······								
		i								
Start Time: /	043			ed Time: ge Purge Rate (mL	27 min /min): 300		Water Qualit	y Meter ID: ted:	YSI 556	
SAMPLING DAT	'Δ	-								
Sample Date: 9-		on ·		le Time: le Flow Rate:	1115 300		Analysis: \	100, SYOC	PCB-TOTAL, P.	B-F(0.454)
COMMENTS:			·		-			<u>4-13/0b</u>		

PROJECT NAME DATE: 9-15-	Migration Stud	y PROJECT	NUMBER: 21561 R: 708 Sunn	640	FIELD PERSONNEL: Smoore/mmiller									
MONITORING WE	ELLID: PMAMU)- 3M IM	" 105 BUNNI	9										
· · · · · · · · · · · · · · · · · · ·		50 AG 100		<u> </u>					· · · · · · · · · · · · · · · · · · ·					
INITIAL DATA						,								
Well Diameter:	otoc): 59,66 oc): 19,52 IAPL (btoc): reen (btoc): 54,66	_ft If Depth to To _ft Place Pump a _ft If Depth to To _ft Place Pump a	o of Screen is < Depth : t: Total Well Depth – (0.	o Water AND Scree (Screen Length + to Water AND Wate 5 X Water Column	en Lenth is (4 feet, DNAPL Column Height) er Column Height and So Height + DNAPL Column ace Pump at: Total Well	= 57. (6 reen Length are (4ft,	Minift btoc (3 Amb	ime of Flow Throu mum Purge Volum x Flow Through Co ient PID/FID Read bore PID/FID Read	ne = ell Volume)	mL mL ppm				
PURGE DATA Pump Type:	ss mons	oon			٥		A CA			A -				
Purge Volume		Depth to			2	Temp	3% Cond.	Tkidit.	10% or ,2	20				
(mL)	Time	Water (ft)	Color	Odor	рН	(°C)	(ms/cm)	Turbidity (NTUs)	DO (mg/l)	ORP (mv)				
15 gel	0822	19.55	cloudy brown	yes	6.76	17.92	2.703	60	1.58	-23.5				
2 5/201 2 5/201	0832	14.55		1	10.89	18.34	2.74	40	0.91	-108.3				
Slant	0832 6837 0842	19.55			691	18.41	2785	9.4	0.81	- 134.3				
3.0 bal	0849	19.55	+ + +		6.92	18.51	2:179 2:178	9.3	0.73	-139.7 -142.8				
Start Time:	819		Flans	ed Time: 2°	8 min		Mater Ovelite	M-4ID-						
Stop Time:	847			ge Purge Rate (mL			Water Quality Date Calibrate	ed: 9-15-0	YSI 556 					
SAMPLING DAT	Α					<u> </u>								
Sample Date:	9-15-04	-	Samp	le Time:	0850		Analysis: \A	00 0404 0	100/2 - > 000	300.45				
	Stainless Steel Mons	soon		le Flow Rate:	Analysis: VOC SIOC, PCB(TOTAL) PCB(Tildered) Date Calibrated: 4-15-06									
COMMENTS:	MS	MSD per	formed at 4	his well	(PMA) 84.	15.06	0855							
		·			(PMAIM-0	906 - MSD) D900							
Asc	continus ! eff	emegance enco	And filling 1	roas	100 100 11	100 1.00	, 010-							

PROJECT NAME DATE: 9-14-0 MONITORING WI	WGK PCB : Migration Study ⊃(¢ ELL ID: (₹MA) M N	WEATHER	NUMBER: <u>21561</u> R: 7 <u>05 - Swhh</u>		F	IELD PERSONNEL:	3 Moore	M. Miller		
INITIAL DATA Well Diameter: Total Well Depth (I Depth to Water (btc Depth to LNAPL/DI Depth to Top of So Screen Length: PURGE DATA	oc): <u>20.92</u> NAPL (btoc): ————————————————————————————————————	_ft If Depth to Top ft Place Pump at _ft If Depth to Top ft Place Pump at	n Height (do not include p of Screen is > Depth t t: Total Well Depth – 0.5 p of Screen is < Depth t: Total Well Depth – (0. gth and/or water columr	to Water AND Screen 5 (Screen Length + D to Water AND Water 5 X Water Column Ho	Lenth is 〈4 feet, NAPL Column Height Column Height and S eight + DNAPL Colum	Screen Length are (4ft,	Mii ft btoc (; An * ft btoc We	lume of Flow Throug nimum Purge Volum 3 x Flow Through Ce nbient PID/FID Readi ellbore PID/FID Readi	e = Il Volume) <u>/ 500</u> ng: O	mL mL ppm ppm
Pump Type:	SS Mon	Ston			,2		27		1200 0	
Purge Volume (mL)	Time 1455	Depth to Water (ft)	Color	Odor	рН	Temp (°C)	3 % Cond. (ms/cm)	Turbidity (NTUs)	10% or 2 DO (mg/l)	ORP (mv)
1.09al	1500	20.90	red prown	yes !	7.13	20.80	0,972	290	2.59	44.1
1,5 agel	1505	20.98	clear	NO	7.02	20.85	0.992	130	1.40	10.4
2.0 gar 2.5 dece	510	20.93		יאט	7.02	20.98	0,986	15	1.17	3.3
3,0 bal	1515	20.98	+./	NO	7.02	21.23	0.984	7.5	1.05	0.4
						2/10	27184	a inj	D.94	-4.6
Start Time: 14	52 20			ed Time:	8 min nin: 500		Water Quali Date Calibra	ty Meter ID:	YSI 556	
SAMPLING DAT Sample Date: 9 Sample Method: COMMENTS:	-14 -06 Stainless Steel Mons			le Flow Rate:	5525 500 EB)		Analysis: N	VOC SVOC, P ted: 9-14-04	CB TOTAL, PCI	3-F
						<u> </u>				

PROJECT NAME: DATE: 9-14-0 MONITORING WEI) (p	WEATHE	NUMBER: 215616 R: 705 Sumn	40 Ly	FI	ELD PERSONNEL:	Smoore	/mmiller		
INITIAL DATA Well Diameter: Total Well Depth (bt Depth to Water (btoo Depth to LNAPL/DN/ Depth to Top of Screen Length:	1: 21.28	ft If Depth to Toft Place Pump aft If Depth to Toft Place Pump a	n Height (do not include L p of Screen is > Depth to tt: Total Well Depth – 0.5 (p of Screen is < Depth to tt: Total Well Depth – (0.5 gth and/or water column	Water AND Screen (Screen Length + D Water AND Water X Water Column H	n Lenth is <4 feet, DNAPL Column Height Column Height and S leight + DNAPL Colum) <u>= .59.08</u> creen Length are <u>(</u> 4ft, in Height) =	ft btoc	Volume of Flow Throug Minimum Purge Volume (3 x Flow Through Ce Ambient PID/FID Readii Wellbore PID/FID Readii	e = Il Volume) <u>/</u> 50 ng: 0	mL mL ppm ppm
	35 monso	<u>On</u>								
Purge Volume	Ti	Depth to				Temp	Cond.	Turbidity	DO	ORP
(mL)	Time 1130	Water (ft)	Color Clear-brn	Odor N O	pH	(°C)	(ms/cm)	(NTUs)	(mg/l)	(mv)
all	1135	21.30	Vlendyy - San		7.65	19.58	2.297	29 90	1.10	23.1
is of	1140	21.30	10 000 94" San		7,47	7-7.01	2,466	180		-93.9
2000	1145	21.30			7.47	20.18	2,481	190	0,80	-155.0
2 aged 2-5 god	1,50	21,30			7.47	19.97	2,480	(80	0.75	-/63.6
3.0 all	1155	21.30			7.46	19.70	2,475	95	0.70	-163.6
3.5 Gal	1200	21.30			7.44	20,55	2.469	105	0.47	-179.1
4 gul	1200	24.30	Cheur		7.46	20:74	2,463	<i>45</i>	0,43	-1841.5
4.560	1210	24 . 30	£ (7.46	71.62	2,461	22	0.39	.186.5
5, Oral	1210	21.30			7.47	22.23	2.412	24	0.39	-187.3
					1			- J. F	+ 0.57	1,1,1,7
Start Time: 1/2	19 3		Elapse Averag	d Time: e Purge Rate (mL/i	46 min min): 350			nality Meter ID:brated:9-14-06	YSI 556	
SAMPLING DATA			'		_		·			·~ 11)
	14 - 06 Stainless Steel Moi	nsoon	Sample Sample	Flow Rate:	2°20	-	Analysis: Date Cali	VOC, SV OC brated: 9-14-6	PCB, F-Pe	B(0.4520)
comments:	le recepted	w/ HCl v	loa's (Smoted)) E	8 after thi	well (pr			-	

MONITORING WE INITIAL DATA Well Diameter: Total Well Depth (b Depth to Water (bto Depth to LNAPL/DN Depth to Top of Sci Screen Length:	c): <u>A1. 18</u> APL (btoc): reen (btoc): <u>22.36</u> ft	m Water Column fit If Depth to Top ft Place Pump at: ft If Depth to Top ft Place Pump at:	of Screen is < Depth Total Well Depth (0	e LNAPL or DNAPL): to Water AND Scree 5 (Screen Length + I to Water AND Wate 9.5 X Water Column F	6.	/ 8)= 24.86 creen Length are ⟨ 4ft	ft btoc Vo	olume of Flow Througi inimum Purge Volume (3 x Flow Through Cel mbient PID/FID Readin lellbore PID/FID Readin	h Cell): <u>500</u> 	mL mL ppm ppm
PURGE DATA Pump Type:S	monsoon						200			
Purge Volume		Depth to		T	,2	T	3%	1	100, or. 2	20
(mL)	. Jime	Water (ft)	Color	Odor	pH	Temp (°C)	Cond. (ms/cm)	Turbidity (NTUs)	DO (mg/l)	ORP (mv)
,5 gal	1451	21.30	Clear	NO	6.92	20,55	1.692	34	1,00	8.3
Isele	1450	21.25	clear		6.92 6.93 6.93	20.92	1.693	7,9	0.88	20
2000	1501 1506	21.26	Clar	ļ. ļ	6.93	21.08	1,696	5.6	0.73	1.8
1.9 cm 2.0 ave 2.5 gue	1511	21.26	clear	 	6.73	21.03	1.707	3.7	0.58	-3.7 -4.0
3.0 Gul	1514	21.26	clear	 	6.92	20.91	1.706	2.3	0.46	-4.0 -3.4
										
Start Time: 14 Stop Time: 15	49 16			sed Time: 2			Date Calibr	rated: <u>9 - 13 - 06</u>	YSI 556	
Committee C	(0 0)							VOC SYOC PCP rated: 9-/3-00	60.4	5U)
Sample Date: 9-	13-06		Sam _l	ple Time: / ple Flow Rate:	520		Analysis: \	VOC.SVOC. PCA	35 F- PCBS. Hem	how Miles
Sample Method:	Stainless Steel Monso	oon	Sam	ple Flow Rate:	400		Date Calibr	ated: 9-/3-0/	0	- 1. 101) Wester
COMMENTS:	Dup perf	orned at	this well							

PROJECT NAMI DATE: 9/14 MONITORING W		WEATHER	NUMBER: 2156 R: VOS, BYEY	1640 Cast	FI	ELD PERSONNEL:	S Moore	mmiller		
Depth to Water (b) Depth to LNAPL/D	(btoc): <u>67.83</u> toc): <u>27.28</u> DNAPL (btoc): <u>—</u> Screen (btoc): <u>56.83</u>	_ft If Depth to Top ft Place Pump at ft If Depth to Top ft Place Pump at	p of Screen is < Depti t: Total Well Depth – ((to Water AND Scree .5 (Screen Length + 1 to Water AND Wate 0.5 X Water Column)	: 40,5 en Lenth is (4 feet, DNAPL Column Height or Column Height and S Height + DNAPL Colum ace Pump at: Total Wel	= <u>5 9.33</u> creen Length are (4ft,	ft btoc	Volume of Flow Throug Minimum Purge Volum (3 x Flow Through Ce Ambient PID/FID Readi Wellbore PID/FID Readi	mL ppm ppm	
PURGE DATA Pump Type:	SS monsee	n	<u> </u>		۱, ک		3%		10% or.2	<i>3</i> 0
Purge Volume	Time to the second seco	Depth to	1			Temp	Cond.	Turbidity	DO DO	ORP
(mL)	Time	Water (ft)	Color	Odor	рН	(°C)	(ms/cm)	(NTUs)	(mg/l)	(mv)
0.5 gul	0840	21,31	akbrown	NO	9.07 9.28 9.33	19.52	1.536	37	2.61	75.6
1.5 644	0 850	21.31	<u> </u>	 	9.28	19.07	2.409	50	1,26	56.4
2 gill	2855	21.31	 	 	9.33	19.00	a.461	40	0.97	35.2
	100 033 0900	21.31	 	 	9.36	19,32	2.462	36	0.80	21.1
3.0 gul	09.05	21.31	 	 	9,43	19.30	2.457	34	0,69	6.8
3 50.40	0910	21.31	· · · · · · · · · · · · · · · · · · ·	 	9.47	19:42	2,460	33	0.60	-5.5 -21.3
4.gal	0915	21.31			9,52	19.31	2.465	30	0.49	- 34.9
4,50gal	0420	21.31			9.56	19.36	2,410	33	0.45	-499
Sall	0925	21.31			9.59	1929	2.481	24	0,42	-70.4
5,5 gal	0930	21.31			9,60	19.29	2,494	24 23	0.40	- 17.4
المنه م	09.5	21.31			9.61	19.18	2.496	10	0.36	- 90.6
700al	09-10	21.31			9,61	19,48	2.490	22	0:35~	-102.5
7.5 aal	0945	21,31	 	ļ	9.61	19.68	2.487	20	0.34	-119.6
8.00/hl	0955	21.31	1-1		9.60	19.50	2.504	30	0.32	-1249
o.vejal_	0-122	<u> </u>	1 4	1 4	9.64	19.33	2.501	17	0.32	-145.7
Start Time: Stop Time:	0840			sed Time: (C age Purge Rate (mL)	35 min min): 400			tuality Meter ID:	YSI 556	
044404		 								
SAMPLING DA	TA									=======================================
Sample Date: Sample Method:	9-14-06 Stainless Steel Mons	oon		ple Time: ple Flow Rate:	1010		Analysi	s: $\sqrt{00}$ SYO? Polibrated: $0 - 14 - 01$	CB, F-PCB LOIL	15 M)
			Jaili	PICTION RAIC.	700		Date Ca	indrated: 9-14-0	b	
COMMENTS:	-Samples w	Ha preser	w. (Voc) Smo	ked when	in contact	w/sample:	possible p	shou seperation		
<u> </u>								· · · · · · · · · · · · · · · · · · ·		

Pg2 of2

PURGE DATA CONTINUED:

					· 2		3%0	10% or . 2 20		
Purge Volume (mL) 8.5 gal 9.0 gal	Time 1000 1005	Depth to Water (ft) 21.31	Color debrn de brn	Odor	pH 9.63 9.44	Temp (°C) 19.31 19.34	390 Cond. (ms/cm) 2,497 2,495	Turbidity (NTUs) 20	DO (mg/l) 0.3/ 0.30	ORP (mv) -156,5 -154,7
9.0 gal	1505	2(.3)	ak bru	No No	9.64	19.34	2.495	19	0.30	-154.7
							·			
	· ·									

COMMENTS:	

Appendix B Chains-of-Custody

680-20272-1/20272-2

YES 🔘

NO \bigcirc

1030

(SIGNATURE)

KL

SEVERN COLUMN OF CUSTODY F	RECOR	D	× 51	T L Sav a .02 LaF	annah Roche A , GA 31	venue 404	· · · · · · · · · · · · · · · · · · ·		Pho		w.stl-inc.com 354-7858	
SEVERN STL TEMPOSIC		,					/Location		Phoi Fax:	ne:		
PROJECT REFERENCE, PROJECT NO. PROJECT LOCATION (STATE) 1	T	TRIX YPE		-		REQ	UIRED ANAL	YSIS	rax:	-	PAGE	OF /
CLIENT (SITE) PM CLIENT PHONE CLIENT FAX CLIENT FAX CLIENT SITE CLIENT FAX	MDICATE	SOLID OR SEMISOLID	OLVENT,)		Total	THE					STANDARD REPOR DELIVERY DATE DUE	RT
WES CLIENT E-MAIL	R GRAB (G)		VOC.s	Sylocs	PCBs -1						EXPEDITED REPOI DELIVERY (SURCHARGE)	RT
CLIENT ADDRESS 1001 Hage Confidence of West Ste 300 St Source, 100 63/10 COMPANY CONTRACTING THIS WORK (if applicable) SAMPLE	OUS (WATER	OCK SEMISC	A COLE COUST LIK	S		 					NUMBER OF COOL PER SHIPMENT:	ERS SUBMITTED
DATE TIME SAMPLE IDENTIFICATION	COMP	AIR SOLI	MON		NUN	MBER OF C	ONTAINERS	SUBMI	TTED		REMAR	
9/14/06 1010 PMA3M-0906 9/14/06 1010 PMA3M-0906-F	X	-	×	X	×						case if mustiple	e phases
9/14/06 1220 PMA 2M-0906	X	++	 ×	×	×	×					are observed	· · · · · · · · · · · · · · · · · · ·
9/14/06 1220 PMA2M-0906-E	X	+		-		×						
9/14/06 1400 PNA 25-0906-EB	K		X	×	×			 				
9/14/06 1400 PMA28-0906-EB-E	X				-	×						
9/14/06 1525 PMA 25 - 0906	χ		×	×	×			1	n a n	7:0	1,8	
7/14/06 1525 PMA 25-0906-F	X			-		×		E	MP.	0.7	2,/5	
1/14/06 TB7-0906	X		×								7	
Who was a second										_		
ANOUNCHED DV. GOALVING												
REANQUISHED BY (SIGNATURE) DATE TIME RELINQUISHED BY: (SIGNATURE) RECEIVED BY SIGNATURE DATE TIME RELINQUISHED BY: (SIGNATURE)	14			DATE 9/14/	06	TIME 17'21		QUISHE	D BY: (SIGNA	(TURE)	DATE 9.15.00	TIME 1700
DATE TIME DECEIVED BY: (SIGNATURE) 1/4/06 /6:30 Then A H		OPV-U	• Pro	BATÉ 9/14/	06	TIME	RECEI	VED BY:	(SIGNATURE)		DATE	TIME
ECEIVED/FOR LABORATORY/BY: DATE TIME CUSTODY, INTACT PERMATURE; PERMATURE; ON O	CUSTOE SEAL NO	Υ().		VANNA Ö.	H	LABORAT(DRY REMARI	KS				

ANALYSIS REQUEST AND CHAIN OF CUSTODY RECORD STL Savannah Website: www.stl-inc.com 5102 LaRoche Avenue Phone: (912) 354-7858 Savannah, GA 31404 SEVERN Fax: (912) 352-0165 STL Alternate Laboratory Name/Location TRENT Phone: Fax: PROJECT NO. 21541640 PROJECT LOCATION MATRIX PAGE OF REQUIRED ANALYSIS (STATE) 16 TYPE P.O. NUMBER Figers. CONTRACT NO. STANDARD REPORT -Total NONAQUEOUS LIQUID (OIL, SOLVENT,...) DELIVERY CLIENT FAX 314-429-0462 CLIENT PHONE DATE DUE 314-429-0100 SVOCS EXPEDITED REPORT CLIENT NAME CLIENT E-MAIL PCBs PCBs. DELIVERY WRS (SURCHARGE) COMPOSITE (C) OR GRA AQUEOUS (WATER) SOLID OR SEMISOLID AIR CLIENT ADDRESS
1001 Highlands Plana Dr. West Ste 300 St. Koris, MOBILO
COMPANY CONTRACTING THIS WORK (if applicable)
Securia DATE DUE NUMBER OF COOLERS SUBMITTED PER SHIPMENT: SAMPLE IDENTIFICATION NUMBER OF CONTAINERS SUBMITTED REMARKS DATE TIME 91,5100 0250 PMAIM-09 ap X 0850 PMAIM-0906-F × 0855 PMAIM-0906-MS × X 0855 PM AIM - 09 06 - MS - F PMAIM - 0906-MSD 0900 X 0900 PMAIM - 0906 - MSD-F 06 PMAIS -0906-F 1115 X PMAIS - 0906 \times TR8-0904 15/06 Sol INQUISHED BY: (SIGNATURE) RELINQUISHED BY: (SIGNATURE) RELINQUISHED BY: (SIGNATURE) DATE TIME 15/06 12/46 RECEIVED DY: (SIGNATURE RECEIVED BY: (SIGNATURE) DATE TIME LABORATORY USE ONLY RECEIVED FOR LABORATORY BY DATE. TIME CUSTODY INTACT STL SAVANNAH CUSTODY LABORATORY REMARKS (SIGNATURE) LOG NO. SEAL NO. YES 🔘

Appendix C Quality Assurance Report

QUALITY ASSURANCE REPORT

Solutia Inc. W.G. Krummrich Facility Sauget, Illinois

PCB Mobility and Migration Investigation 3rd Quarter 2006 Data Report

Prepared for
Solutia Inc.
575 Maryville Centre Drive
St. Louis, MO 63141

January 2007

URS Corporation 1001 Highland Plaza Drive West, Suite 300 St. Louis, MO 63100 (314) 429-0100 **Project # 21561640.00003**

1.0	INTRODUCTION	1
2.0	RECEIPT CONDITION AND SAMPLE HOLDING TIMES	3
3.0	TRIP BLANKS, LABORATORY METHOD AND EQUIPMENT BLANK SAMPLES	3
4.0	SURROGATE SPIKE RECOVERIES	4
5.0	LABORATORY CONTROL SAMPLES RECOVERIES	4
6.0	MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD) SAMPLES	5
7.0	FIELD DUPLICATE RESULTS	5
8.0	INTERNAL STANDARD RESPONSES	6
9.0	RESULTS REPORTED FROM DILUTIONS	6

1.0 INTRODUCTION

This Quality Assurance Report presents the findings of a review of analytical data for groundwater samples collected in September 2006 at the Solutia W.G. Krummrich plant as part of the 3rd Quarter 2006 PCB Mobility and Migration Investigation. The samples were collected by URS Corporation personnel and analyzed by Severn Trent Laboratories (STL) located in Savannah, Georgia using USEPA methodologies. Samples were analyzed for volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), and polychlorinated biphenyls (PCBs).

One hundred percent of the data were subjected to a data quality review (Level III validation). The Level III validation was performed in order to confirm that the analytical data provided by Severn Trent were acceptable in quality for their intended use.

A total of 13 samples (7 investigative groundwater samples, one field duplicate, one matrix spike and matrix spike duplicate (MS/MSD) pairs, one equipment blank and two trip blanks) were analyzed by STL. These samples were analyzed as Sample Delivery Group (SDG) KPM003. The samples were analyzed according to the following USEPA Methods:

- Method 8260B for VOCs (including dichlorobenzenes due to potential volatilization losses associated with Method 8270).
- Method 8270C for SVOCs
- Method 680 for PCBs

Samples were reviewed following procedures outlined in the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, October 1999, and the PCB Mobility and Migration Investigation, (October 2005).

The above guidelines provided the criteria to review the data. Additional quantitative criteria are given in the analytical methods. Qualifiers assigned by the data reviewer have been applied to the laboratory reporting forms (Form-1s). The qualifiers indicate data that did not meet acceptance criteria and corrective actions were not successful or not performed. The various qualifiers are explained in **Tables 1** and **2** below.

TABLE 1 Laboratory Data Qualifiers

Lab Qualifier	Definition
U	Analyte was not detected at or above the reporting limit.
*	LCS, LCSD, MS, MSD, MD or surrogate exceeds the control limits.
Е	Result exceeded the calibration range, secondary dilution required.
D	Surrogate or matrix spike recoveries were not obtained because the extract was diluted for analysis; also compounds analyzed at a dilution will be flagged with a D.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
N	MS, MSD: Spike recovery exceeds upper or lower control limits.
Н	Sample was prepped or analyzed beyond the specified holding time.
В	Compound was found in the blank and sample.
4	MS, MSD: The analyte present in the original sample is 4 times greater than the matrix spike concentration; therefore, control limits are not applicable.

TABLE 2 URS Data Qualifiers

URS Qualifier	Definition				
U	The analyte was analyzed for but was not detected.				
j	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.				
UJ	The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.				
R	The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.				

Based on the criteria outlined, it is recommended that the results reported for these analyses be accepted for their intended use. Acceptable levels of accuracy, precision, and representativeness (based on MS/MSD, LCS, surrogate compounds and field duplicate results) were achieved for this data set, except where noted in this report. In addition, analytical completeness, defined to be the percentage of analytical results which are judged to be valid, including estimated detect (J) or estimated non-detect (UJ) values was 100 percent, which meets the completeness goal of 95 percent.

The data review included evaluation of the following criteria:

Organics

- · Receipt condition and sample holding times
- Laboratory method blanks, field equipment blanks and trip blank samples
- Surrogate spike recoveries
- Laboratory control sample (LCS) recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) sample recoveries and Relative Percent Difference (RPD) values
- · Field duplicate results
- Results reported from dilutions
- Internal standard responses

2.0 RECEIPT CONDITION AND SAMPLE HOLDING TIMES

Sample holding time requirements for the analyses performed are presented in the methods and/or in the data review guidelines. Review of the sample collection, extraction and analysis dates involved comparing the chain-of-custody and the laboratory data summary forms for accuracy, consistency, and holding time compliance.

Extractions and/or analyses were completed within the recommended holding time requirements for all samples.

3.0 TRIP BLANKS, LABORATORY METHOD BLANK AND EQUIPMENT BLANK SAMPLES

Trip blank samples are used to assess VOC cross contamination of samples during shipment to the laboratory. One trip blank was submitted with each cooler shipped containing samples for VOC analyses for a total of two trip blank samples. Analytes were not detected in the trip blanks.

Equipment blank samples are used to assess the effectiveness of equipment decontamination procedures. Benzene (1.0 μ g/L) was detected in equipment blank PMA2A-0906-EB. Sample results for benzene were greater than 5X the equipment blank results; therefore no qualification of data was required.

Laboratory method blank samples evaluate the existence and magnitude of contamination problems resulting from laboratory activities. All laboratory method blank samples were analyzed at the method prescribed frequencies. No analytes were detected in any of the method blanks.

4.0 SURROGATE SPIKE RECOVERIES

Surrogate compounds are used to evaluate overall laboratory performance for sample preparation efficiency on a per sample basis. All samples analyzed for VOCs, SVOCs, and PCBs were spiked with surrogate compounds during sample preparation. USEPA National Functional Guidelines for Organic Data Review state how data is qualified, if surrogate spike recoveries do not meet evaluation criteria.

Surrogate recoveries were within evaluation criteria with the exception of the samples in the table below. When surrogates were not recovered due to dilutions, no qualifiers were assigned. Surrogates that were outside evaluation criteria in MS/MSD and equipment blank samples were not qualified because they are quality control samples and not qualified.

SDG	Sample ID(s)	Analysis	Surrogate	Rec.	Range	Qualification
KPM003	PMA1M-0906 PMA3M-0906	SVOCs	2-fluorobiphenyl Nitrobenzene-d5 Terphenyl-d14	0 D 0 D 0 D	59-103 60-102 10-154	None, surrogates were not recovered due to high level of dilution in the samples.
KPM003	PMA2M-0906	SVOCs	2-fluorobiphenyl 2-fluorophenol Nitrobenzene-d5 Terphenyl-d14	0 D 54 0 D 0 D	59-103 56-100 60-102 10-154	None, surrogates were not recovered due to high level of dilution in the sample, and only one acid fraction surrogate was outside evaluation criteria where two need to be outside evaluation criteria to qualify.

5.0 LABORATORY CONTROL SAMPLE RECOVERIES

Laboratory control samples (LCS) are analyzed with each analytical batch to assess the accuracy of the analytical process. All LCS recoveries were within evaluation criteria with the exception of the LCSs in the table below. Qualifications were assigned as appropriate.

Data that was reported as nondetect and associated with LCS recoveries above evaluation criteria, indicating a possible high bias, did not require qualification. Also if the LCS was related to QA/QC samples such as trip blanks and MS/MSDs, no qualifiers were assigned.

SDG	LSEID	Sample ID	LCS compound	Rec. %	Range	Qualification
KPM003	680-55366/16-A	PMA1S-0906 PMA3M-0906 PMA2M-0906	Benzo[a]anthracene	120	55-119	None

6.0 MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD) SAMPLES

MS/MSD samples are analyzed to assess the accuracy and precision of the analytical process on an analytical sample in a particular matrix. MS/MSD samples were required to be collected at a frequency of one per 20 investigative samples in accordance with the work plan. URS Corporation submitted one MS/MSD sample set for 7 investigative samples meeting the work plan frequency requirement.

No qualifications were made to the data if the MS/MSD percent recoveries were zero due to dilutions or if the percent RPD was the only factor out of criteria. Also, USEPA National Functional Guidelines for Organic Data Review (October 1999) states that organic data should not be qualified based on MS/MSD criteria alone. Therefore, if recoveries were outside evaluation criteria due to matrix interference or abundance of analytes, no qualifiers were assigned unless these analytes had other quality control criteria outside evaluation criteria.

The MS/MSD recoveries and RPDs that did not meet evaluation criteria are in the table below

SDG	Analysis	Analyte	MS/MS D %Rec.	Criteria %	RPD %	RPD Limit	Qualifier
		Benzene	126 /112	74-122	5	30	No qualifiers were
KPM003	VOCs	Chlorobenzene	131 /116	75-123	6	30	assigned since all other
14 14005	V003	Dichlorodifluoromethane	184/171	70-130	8	30	QC parameters met
		1,1,1,2-tertachloroethane	121/114	62-107	6	30	criteria.
		Bis(2-chloroethoxy)methane	135/130	55-115	4	40	
		4-chloroaniline	112 /98	22-107	8	40	No qualifiers were
KPM003	SVOCs	4-chloro-3-methylphenol	508/492	58-118	3	40	assigned since all other
KEWIOOS	3,000	4,6-dinitro-2-methylphenol	35/32	42-155	8	40	QC parameters met
		2,6-dinitrotoluene	66/ 64	65-124	4	40	criteria.
L		2-nitrophenol	54/55	59-114	1	40	

7.0 FIELD DUPLICATE RESULTS

Field duplicate results are used to evaluate precision of the entire data collection activity, including sampling, analysis and site heterogeneity. When results for both duplicate and sample values are greater than five times the practical quantitation limit (PQL), satisfactory precision is indicated by an RPD less than or equal to 25 percent for aqueous samples. Where one or both of the results of a field duplicate pair are reported at less than five times the PQL, satisfactory precision is indicated if the field duplicate results agree within 2.5 times the quantitation limit. Field duplicate results that do not meet these criteria may indicate unsatisfactory precision of the results.

One field duplicate sample was collected for the 7 investigative samples. This satisfies the requirement in the work plan (one per 10 investigative samples or 10 percent). All reported results for the field duplicate sample were in agreement with the above acceptance criteria.

8.0 INTERNAL STANDARD RESPONSES

Internal standard (IS) performance criteria ensure that the GC/MS sensitivity and response are stable during each analytical run. IS areas must be within -50 percent to +100 percent for VOCs and SVOCs. For the PCBs (Method 680), the IS areas must be within +/- 30 percent of the preceding calibration verification (CV) IS value. Also, the IS retention times must be within 30 seconds of the preceding IS CV retention time. If the IS area count is outside criteria, Method 680 indicates the mean IS area obtained during the initial calibration (ICAL) (+/- 50 percent) should be used.

The internal standards area responses for the VOCs, SVOCs and PCBs were verified for the data review. All IS responses met the criteria as described above, in all samples.

9.0 RESULTS REPORTED FROM DILUTIONS

Several VOC, SVOC and PCB samples were diluted and reanalyzed due to the original results exceeding the calibration range of the instrument. These results were qualified by the laboratory with "E" qualifiers. Data for the original runs were reported except for the data results that were "E" qualified. The samples that had "E" qualifiers were diluted and reanalyzed. The diluted sample results of the "E" qualifiers were the only results reported from the diluted samples.

Appendix D Groundwater Analytical Results

SDG KPM003

Results of Samples from Wells:

PMA3S

PMA1M

PMA1S

PMA3M

PMA₂M

PMA2S

TO:

Mr. Bob Billman, URS Corp.

FROM:

Lidya Gulizia, STL Savannah Wayne Robbins, STL Savannah

DATE:

November 11, 2006

RE:

Request for Data Verification in SDG No KPM003

Diallate Reported in STL Savannah Report No. 680-20272-1

The following is provided to URS Corp in response to the request made by Mr. Tony Sedlacek of URS Corp during data validation of Solutia PCB Mobility and Migration samples reported in STL Savannah Report No. 680-20272-1 under laboratory SDG No. KPM003.

Mr. Sedlacek requested STL Savannah to confirm the Diallate detections reported in lab samples 680-20272-10, -12 and -14 due to a discrepancy noted in the raw data deliverables concerning the manual integrations performed for Diallate in these samples.

Based on the following laboratory review, it was determined that Diallate was incorrectly reported in the samples as a false positive.

Mr. Wayne Robbins provided the following explanation for the generated error in the sample results:

The Appendix IX target compound Diallate was incorrectly reported for samples 680-20272-10, -12 and -14. In all of the samples, the analyst(s) correctly evaluated the samples and properly undetected both isomers in the sample data. As a point of information, Diallate is reported as the sum of two isomers referenced as Diallate-1 and Diallate-2 in the instrument data system and on the calibration report summaries (CLP Forms 6 and 7). The analytical system is calibrated by analyzing multiple-point calibration standards for both isomers and summing the isomers to reported as Diallate.

When the final results were uploaded to the laboratory's information management system (LIMS), false positive results for Diallate were transferred for these samples. The analyst and the data reviewer failed to detect this error and the results for the samples were reported as positive for Diallate.

The error appears to have been related to the instrument data system. While the root cause of the error could not determined, this error appears to have been isolated to Diallate in this particular analytical batch of samples.

The laboratory performed the following corrective action with respect to the reported sample data:

- The sample data were reviewed by the department manager and the group leader;
- The positive detects for Diallate were removed from the report and the results were edited revised to non-detect (below the reporting limit)

Finally, the semivolatile mass spectrometer department analysts have been notified of this potential problem and have been instructed to verify that the target compounds up-loaded as the sum of isomers must be verified in the LIMS even if the constituent isomers are not present in the samples.

A revised report and electronic data deliverable (EDD) were issued to URS Corp. on November 11, 2006.

Solutia Krummrich Data Review

Laboratory SDG: KPM003

Reviewer: Tony Sedlacek

Date Reviewed: 11/02/2006

Guidance: USEPA National Functional Guidelines for Organic Data Review 1999.

Applicable Work Plan: PCB Mobility and Migration Investigation 2005

Sample Identification #	Sample Identification #
PMA3S-0906	PMA3S-0906-F
PMA3S-0906-DUP	PMA3S-0906-F-DUP
PMA1M-0906	PMA1M-0906-F
PMA1S-0906-F	PMA1S-0906
TB8-0906	PMA3M-0906
PMA3M-0906-F	PMA2M-0906
PMA2M-0906-F	PMA2S-0906-EB
PMA2S-0906-EB-F	PMA2S-0906
PMA2S-0906-F	TB7-0906

1.0 Data Package Completeness

Were all items delivered as specified in the QAPP and COC?

Yes

2.0 Laboratory Case Narrative \ Cooler Receipt Form

Were problems noted in the laboratory case narrative or cooler receipt form?

Yes, the laboratory case narrative indicated VOC and SVOC MS/MSD recoveries were outside evaluation criteria. An SVOC surrogate and LCS recovery was outside evaluation criteria. PCB and SVOC internal standards recovered outside evaluation criteria. These issues are addressed further in the appropriate sections below.

The cooler receipt form did not indicate any problems.

3.0 Holding Times

Were samples extracted/analyzed within QAPP limits?

Yes

Field ID	Parameter :	Analyte -	Qualification
N/A			

4.0 Blank Contamination

Were any analytes detected in the Method Blanks, Field Blanks or Trip Blanks?

Yes

Blank ID	Parameter	Analyte	Concentration -	Units
PMA2A-0906-EB	VOCs	Benzene	1.0	μg/L

Qualifications due to blank contamination are included in the table below. Analytical data that were reported nondetect or at concentrations greater than five times (5X) the associated blank concentration (10X for common laboratory contaminants) did not require qualification.

Field ID	Parameter	Analyte	New RL	Qualification
N/A				

5.0 Laboratory Control Sample

Were LCS recoveries within evaluation criteria?

Yes, except as noted below.

LCSID	Parameter	Analyte	LCS/LCSD Recovery	RPD	LCS/LCSD/RPD Criteria
680-55366/16-A	SVOCs	Benzo[a]anthracene	120	N/A	55-119

Analytical data that required qualification based on LCS data are included in the table below. Analytical data which were reported as nondetect and associated with LCS recoveries above evaluation criteria, indicating a possible high bias, did not require qualification.

Field ID	Parameter	Analyte	Qualification
N/A			

6.0 Surrogate Recoveries

Were surrogate recoveries within evaluation criteria?

Yes, except as noted below.

Field ID	Parameter :	Surrogate	Recovery	Criteria
PMA2M-0906	SVOCs	2-fluorophenol	54	56-100

Analytical data that required qualification based on surrogate data are included in the table below. Analytical data which were reported as nondetect and associated with surrogate recoveries above evaluation criteria, indicating a possible high bias, did not require qualification. Since only one acid fraction surrogate was outside criteria for sample PMA2M-0906 and Functional Guidelines indicates to qualify data if two or more surrogates per SVOC fraction are outside criteria, no qualification of the SVOC data was required. SVOC surrogates were not recovered due to dilution in samples PMA1M-0906, PMA3M-0906 and PMA2M-0906, no qualification of data was required.

Field ID	Parameter	Analyte	Qualification
N/A			

7.0 Matrix Spike and Matrix Spike Duplicate Recoveries

Were MS/MSD samples reported as part of this SDG?

Yes, sample PMA1M-0906 was spiked and analyzed for VOCs, SVOCs and PCBs and PMA1M-0906-F was spiked and analyzed for PCBs.

Were MS/MSD recoveries within evaluation criteria?

No

MS/MSD ID	Parameter	Analyte	MS/MSD Recovery	RPD	MS/MSD/RPD Criteria
PMA1M-0906	VOCs	Benzene	126 /112	5	74-122/30
PMA1M-0906	VOCs	Chlorobenzene	131/116	6	75-123/30
PMA1M-0906	VOCs	Dichlorodifluoromethane	184/171	8	70-130/30
PMA1M-0906	VOCs	1,1,1,2-Tetrachloroethane	121/114	6	62-107/30
PMA1M-0906	SVOCs	bis(2-chloroethoxy)methane	135/130	4	55-115/40
PMA1M-0906	SVOCs	4-chloroaniline	112/98	8	22-107/40
PMA1M-0906	SVOCs	4-chloro-3-methylphenol	508/492	3	58-118/40
PMA1M-0906	SVOCs	4,6-dinitro-2-methylphenol	35/32	8	42-155/40
PMA1M-0906	SVOCs	2,6-dinitrotoluene	66/64	4	65-124/40
PMA1M-0906	SVOCs	2-nitrophenol	54/55	1	59-114/40

Analytical data that required qualification based on MS/MSD data are included in the table below. The MS/MSD recoveries for organic compounds with sample concentrations greater than four times (4X) the matrix spike concentration did not require evaluation or qualification. USEPA National Functional Guidelines for Organic Data Review indicates that organic data should not be qualified based on MS/MSD data alone and LCS recoveries were within evaluation criteria, therefore no qualification of the data was required.

Field ID	Parameter Analyte Qualification	
N/A		

8.0 Internal Standard (IS) Recoveries

Were internal standard area recoveries within evaluation criteria?

Yes, except as noted below.

Field ID	Parameter	Analyte	IS Area Recovery	IS Criteria
PMA1M-0906	PCBs	Phenanthrene-d10	188673	195495-363061
PMA1M-0906	PCBs	Chrysene-d12	76756	96194-178646
PMA1M-0906-F	PCBs	Chrysene-d12	81309	96194-178646
PMA3S-0906-F	PCBs	Chrysene-d12	76986	82724-153630
PMA1S-0906-F	PCBs	Phenanthrene-d10	169799	179743-333807
PMA1S-0906-F	PCBs	Chrysene-d12	67123	82724-153630
PMA3M-0906-F	PCBs	Chrysene-d12	81998	82724-153630

Analytical data that required qualification based on IS data are included in the table below. SVOC internal standard naphthalene-d8 recovered low in MS/MSD sample PMA1M-0906. MS/MSD samples are quality control samples and are not qualified. Internal standard areas for phenanthrene-d₁₀ and chrysene-d₁₂ recovered within the initial calibration average internal standard area for samples PMA1M-0906, PMA1M-0906-F, PMA3S-0906-F, PMA1S-0906-F, PMA3M-0906-F; therefore, no qualification of data was required.

Field ID	Parameter	Analyte	 Qualification
N/A			

9.0 Laboratory Duplicate Results

Were laboratory duplicate samples collected as part of this SDG?

No

Were laboratory duplicate sample RPDs within criteria?

N/A

Field ID	Parameter	Analyte	RPD 35	Criteria
N/A				·

Data qualified due to outlying laboratory duplicate recoveries are identified below:

Field ID	Parameter 5%	Analyte	Qualification
N/A			

10.0 Field Duplicate Results

Were field duplicate samples collected as part of this SDG?

Yes

Field ID	Field Duplicate ID
PMA3S-0906	PMA3S-0906-DUP
PMA3S-0906-F	PMA3S-0906-F-DUP

Were field duplicates within evaluation criteria?

Yes

Field ID	Field Duplicate ID	Parameter Analyt	e RPD Qualification
N/A			

11.0 Sample Dilutions

For samples that were diluted and nondetect, were undiluted results also reported?

No

The following table identifies the analyses which were reported as nondetect, diluted, and an undiluted run *was not* reported:

Field ID	Parameter	Dilution Factor
PMA1M-0906	VOCs	25
PMA3M-0906	VOCs	10
PMA2M-0906	VOCs	50
PMA1M-0906	SVOCs	5
PMA3M-0906	SVOCs	5
PMA2M-0906	SVOCs	5

12.0 Additional Qualifications

Were additional qualifications applied?

No

SAMPLE RESULTS

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

PMA3S-0906

Lab Sample ID:

680-20272-3

Client Matrix:

Water

Date Sampled:

09/13/2006 1520

Date Received:

09/15/2006 1030

8260B Volatile Organic Compounds by GC/MS

Method:

8260B

Analysis Batch: 680-55512

Result (ug/L)

Instrument ID:

GC/MS Volatiles - O

Preparation:

Analyte

5030B

....

Lab File ID:

o0914.d

Dilution:

1.0

Initial Weight/Volume:

Qualifier

5 mL

RL

Date Analyzed:

09/21/2006 1542

Final Weight/Volume:

5 mL

Date Prepared:

09/21/2006 1542

, way to	/ (OOU!! (Ug/ L/	Q.00	
Acetone	25	U	25
Acetonitrile	40	U	40
Acrolein	20	U	20
Acrylonitrile	20	U	20
Benzene	290	E	1.0
Bromoform	1.0	U ·	1.0
Bromomethane	1.0	U	1.0
Carbon disulfide	2.0	U	2.0
Carbon tetrachloride	1.0	. U	1.0
Chlorobenzene .	1.8		1.0
2-Chloro-1,3-butadiene	1.0	U	1.0
Chlorodibromomethane	1.0	U	1.0
Chloroethane	1.0	U	1.0
Chloroform	1.0	U	1.0
Chloromethane	1.0	U	1.0
3-Chloro-1-propene	1.0	U	1.0
cis-1,3-Dichloropropene	1.0	U	1.0
1,2-Dibromo-3-Chloropropane	1.0	U .	1.0
Dibromomethane	1.0	U	1.0
1,2-Dichlorobenzene	1.0	U	1.0
1,3-Dichlorobenzene	1.0	U	1.0
1,4-Dichlorobenzene	1.0	U	1.0
Dichlorobromomethane	1.0	U	1.0
Dichlorodifluoromethane	1.0	U	1.0
1,2-Dichloroethane	1.0	U	1.0
1,1-Dichloroethane	1.0	U	1.0
1,1-Dichloroethene	1.0	U	1.0
1,2-Dichloropropane	1.0	U	1.0
Ethylbenzene	1.0	U	1.0
Ethylene Dibromide	1.0	U	1.0
Ethyl methacrylate	1.0	U	1.0
2-Hexanone	10	U	10
lodomethane	5.0	U	5.0
Isobutanol	40	U	40
Methacrylonitrile	20	U	20
Methylene Chloride	5.0	U	5.0
Methyl Ethyl Ketone	10	U	10
methyl isobutyl ketone	10	Ü	10
Methyl methacrylate	1.0	U	1.0
Pentachloroethane	5.0	Ü	5.0
Propionitrile	20	Ū	20
Styrene	1.0	Ü	1.0
1,1,2,2-Tetrachioroethane			

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

PMA3S-0906

Lab Sample ID:

680-20272-3

Client Matrix:

Water

Date Sampled:

09/13/2006 1520

Date Received:

09/15/2006 1030

8260B Volatile Organic Compounds by GC/MS

Method:

8260B

Instrument ID:

GC/MS Volatiles - O

Preparation:

5030B

Analysis Batch: 680-55512

Lab File ID:

o0914.d

Dilution: Date Analyzed: 1.0

Initial Weight/Volume:

5 mL

Date Prepared:

09/21/2006 1542 09/21/2006 1542

Final Weight/Volume: 5 mL

Analyte	Result (ug/L)	Qualifier	RL
1,1,1,2-Tetrachloroethane	1.0	U	1.0
Tetrachloroethene	1.0	U	1.0
Toluene	1.0	U	1.0
trans-1,4-Dichloro-2-butene	2.0	U	2.0
trans-1,2-Dichloroethene	1.0	U	1.0
trans-1,3-Dichloropropene	1.0	υ	1.0
1,1,2-Trichloroethane	1.0	U	1.0
1,1,1-Trichloroethane	1.0	U	1.0
Trichloroethene	1.0	U	1.0
Trichlorofluoromethane	1.0	U	1.0
1,2,3-Trichloropropane	1.0	U	1.0
finyl acetate	2.0	U	2.0
√inyl chloride	1.0	U	1.0
Xylenes, Total	2.0	U	2.0
Surrogate	%Rec		Acceptance Limits
4-Bromofluorobenzene	97	**************************************	77 - 120
Dibromofluoromethane	94		75 - 123
Toluene-d8 (Surr)	98		79 - 122

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

PMA3S-0906

Lab Sample ID:

680-20272-3

Client Matrix:

Water

Date Sampled:

09/13/2006 1520

Date Received:

09/15/2006 1030

8260B Volatile Organic Compounds by GC/MS

Method:

8260B

Analysis Batch: 680-55512

Instrument ID:

GC/MS Volatiles - O

25

100

5.0

5.0

Preparation:

5030B

•

Lab File ID:

o0921.d

Dilution: Date Analyzed: 5.0

Run Type: DL

Initial Weight/Volume:

5 mL

Date Prepared:

09/21/2006 1848 09/21/2006 1848 Final Weight/Volume:

5 mL

Analyte	Result (ug/L)	Qualifier	RL
Acetone	130	U	130
Acetonitrile	200	U	200
Acrolein	100	U	100
Acrylonitrile	100	U	100
Benzene	230	Đ	5.0
Bromoform	5.0	U	5.0
Bromomethane	5.0	U	5.0
Carbon disulfide	10	U	10
Carbon tetrachloride	5.0	U	5.0
Chlorobenzene	5.0	U	5.0
2-Chloro-1,3-butadiene	5.0	U	5.0
Chlorodibromomethane	5.0	U	5.0
Chloroethane	5.0	U	5.0
Chloroform	5.0	U	5.0
Chloromethane	5.0	U	5.0
3-Chloro-1-propene	5.0	υ	5.0
cis-1,3-Dichloropropene	5.0	U	5.0
1,2-Dibromo-3-Chloropropane	5.0	U	5.0
Dibromomethane	5.0	U	5.0
1,2-Dichlorobenzene	5.0	U	5.0
1,3-Dichlorobenzene	5.0	U	5.0
1,4-Dichlorobenzene	5.0	υ	5.0
Dichlorobromomethane	5.0	U	5.0
Dichlorodifluoromethane	5.0	U	5.0
1,2-Dichloroethane	5.0	IJ	5.0
1,1-Dichloroethane	5.0	U	5.0
1,1-Dichloroethene	5.0	U	5.0
1,2-Dichloropropane	5.0	U	5.0
Ethylbenzene	5.0	U	5.0
Ethylene Dibromide	5.0	U	5.0
Ethyl methacrylate	5.0	U	5.0
2-Hexanone	50	U .	50
lodomethane	25	U	25
Isobutanol	200	U	200
Methacrylonitrile	100	U	100
Methylene Chloride	25	U	25
Methyl Ethyl Ketone	50	Ū	50
methyl isobutyl ketone	50	Ü	50
Methyl methacrylate	5.0	Ū	5.0

25

100

5.0

5.0

Ū

U

U

U

Pentachloroethane

1,1,2,2-Tetrachloroethane

Propionitrile

Styrene

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

PMA3S-0906

Lab Sample ID:

680-20272-3

Client Matrix:

Date Sampled:

09/13/2006 1520

Water

Date Received: 09/15/2006 1030

8260B Volatile Organic Compounds by GC/MS

Method:

8260B

Analysis Batch: 680-55512

Instrument ID:

GC/MS Volatiles - O

Preparation:

5030B

Lab File ID:

o0921.d

Dilution:

5.0

Initial Weight/Volume:

5 mL

Date Analyzed:

09/21/2006 1848

Run Type: DL

Final Weight/Volume:

5 mL

Date Prepared:

09/21/2006 1848

Analyte	Result (ug/L)	Qualifier	RL
1,1,1,2-Tetrachloroethane	5.0	U	5.0
Tetrachloroethene	5.0	U	5.0
Toluene	5.0	U	5.0
trans-1,4-Dichloro-2-butene	10	U	10
trans-1,2-Dichloroethene	5.0	U	5.0
trans-1,3-Dichloropropene	5.0	U	5.0
1,1,2-Trichloroethane	5.0	U	5.0
1,1,1-Trichloroethane	5.0	.U	5.0
Trichloroethene	5.0	ប	5.0
Trichlorofluoromethane	5.0	U	5.0
1,2,3-Trichloropropane	5.0	U	5.0
'inyl acetate	10	U	10
/inyl chloride	5.0	U	5.0
Xylenes, Total	10	U	10
Surrogate	%Rec		Acceptance Limits
4-Bromofluorobenzene	97	77 - 120	
Dibromofluoromethane	95	75 - 123	
Toluene-d8 (Surr)	96		79 - 122

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

PMA3S-0906-DUP

Lab Sample ID:

680-20272-5

Client Matrix:

Water

Date Sampled:

09/13/2006 1520

Date Received:

09/15/2006 1030

8260B Volatile Organic Compounds by GC/MS

Method:

8260B

Analysis Batch: 680-55512

Instrument ID:

GC/MS Volatiles - O

1.0

Preparation:

5030B

Lab File ID:

o0915.d

Dilution:

1.0

Initial Weight/Volume:

5 mL

Date Analyzed:

09/21/2006 1608

Final Weight/Volume:

5 mL

Date Pr	epared:
---------	---------

09/21/2006 1608

Analyte	Result (ug/L)	Qualifier	RL
Acetone	25	U	25
Acetonitrile	40	U	40
Acrolein	20	U	20
Acrylonitrile	20	U	20
Benzene	260	E	1.0
Bromoform	1.0	U	1.0
Bromomethane	1.0	U	1.0
Carbon disulfide	2.0	U	2.0
Carbon tetrachloride	1.0	U	1.0
Chlorobenzene	1.5		1.0
2-Chloro-1,3-butadiene	1.0	U	1.0
Chlorodibromomethane	1.0	U	1.0
Chloroethane	1.0	U	1.0
Chloroform	1.0	U	1.0
Chloromethane	1.0	U	1.0
3-Chloro-1-propene	1.0	U	1.0
cis-1,3-Dichloropropene	1.0	U	1.0
1,2-Dibromo-3-Chloropropane	1.0	U	1.0
Dibromomethane	1.0	U	1.0
1,2-Dichlorobenzene	1.0	U	1.0
1,3-Dichlorobenzene	1.0	U	1.0
1,4-Dichlorobenzene	1.0	U	1.0
Dichlorobromomethane	1.0	U	1.0
Dichlorodifluoromethane	1.0	U	1.0
1,2-Dichloroethane	1.0	U	1.0
1,1-Dichloroethane	1.0	Ū	1.0
1,1-Dichloroethene	1.0	Ü	1.0
1,2-Dichloropropane	1.0	Ü	1.0
Ethylbenzene	1.0	Ü	1.0
Ethylene Dibromide	1.0	Ū	1.0
Ethyl methacrylate	1.0	Ū	1.0
2-Hexanone	10	Ū	10
lodomethane	5.0	Ū	5.0
Isobutanol	40	Ü	40
Methacrylonitrile	20	Ū	20
Methylene Chloride	5.0	Ü	5.0
Methyl Ethyl Ketone	10	Ü	10
methyl isobutyl ketone	10	Ü	10
Methyl methacrylate	1.0	Ŭ	1.0
Pentachloroethane	5.0	Ü	5.0
Propionitrile	20	Ü	20
Styrene	1.0	Ü	1.0
4.4.2.2 Tetraphiasasthana	1.0	,,	1.0

1.0

1,1,2,2-Tetrachloroethane

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

PMA3S-0906-DUP

Lab Sample ID:

680-20272-5

Client Matrix:

Water

Date Sampled:

09/13/2006 1520

Date Received:

09/15/2006 1030

8260B Volatile Organic Compounds by GC/MS

Method:

8260B

Analysis Batch: 680-55512

Instrument ID:

GC/MS Volatiles - O

Preparation:

5030B

Lab File ID:

o0915.d

79 - 122

Dilution:

1.0

Initial Weight/Volume:

5 mL

Date Analyzed:

09/21/2006 1608

Final Weight/Volume:

5 mL

Date Prepared:

Toluene-d8 (Surr)

09/21/2006 1608

Analyte	Result (ug/L)	Qualifier	RL	
1,1,1,2-Tetrachloroethane	1.0	U	1.0	
Tetrachloroethene	1.0	U	1.0	
Toluene	1.0	U	1.0	
trans-1,4-Dichloro-2-butene	2.0	U	2.0	
trans-1,2-Dichloroethene	1.0	U	1.0	
trans-1,3-Dichloropropene	1.0	U	1.0	
1,1,2-Trichloroethane	1.0	บ	1.0	
1,1,1-Trichloroethane	1.0	U	1.0	
Trichloroethene	1.0	U	1.0	
Trichlorofluoromethane	1.0	U	1.0	
1,2,3-Trichloropropane	1.0	ប	1.0	
Vinyl acetate	2.0	U	2.0	
Vinyl chloride	1.0	U	1.0	
Xylenes, Total	2.0	U	2.0	
Surrogate	%Rec		Acceptance Limits	
4-Bromofluorobenzene	95	77 - 120		
Dibromofluoromethane	96		75 - 123	

100

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

PMA3S-0906-DUP

Lab Sample ID:

680-20272-5

Client Matrix:

Water

Date Sampled:

09/13/2006 1520

Date Received: 09/15/2006 1030

8260B Volatile Organic Compounds by GC/MS

Method:

8260B

Analysis Batch: 680-55616

Instrument ID:

GC/MS Volatiles - O

Preparation:

5030B

Lab File ID:

o0938.d

RL 130

Dilution:

5.0

Run Type: DL

Initial Weight/Volume:

5 mL

Date Analyzed: Date Prepared: 09/22/2006 1459 09/22/2006 1459 Final Weight/Volume:

5 mL

Analyte	Result (ug/L)	Qualifier
Acetone	130	U
Acetonitrile	200	U
Acrolein	100	U
Acrylonitrile	100	U
Benzene	250	D
Bromoform	5.0	U
Bromomethane	5.0	U
Carbon disulfide	10	U
Carbon tetrachloride	5.0	U
Chlorobenzene	5.0	· U
2-Chloro-1,3-butadiene	5.0	U
Chlorodibromomethane	5.0	U
Chloroethane	5.0	U
Chloroform	5.0	U
Chloromethane	5.0	U
3-Chloro-1-propene	5.0	U
cis-1,3-Dichloropropene	5.0	U
1,2-Dibromo-3-Chloropropane	5.0	U
Dibromomethane	5.0	U
1,2-Dichlorobenzene	5.0	U
1,3-Dichlorobenzene	5.0	บ
1,4-Dichlorobenzene	5.0	U
Dichlorobromomethane	5.0	U
Dichlorodifluoromethane	5.0	U
1,2-Dichloroethane	5.0	U
1,1-Dichloroethane	5.0	U
1,1-Dichloroethene	5.0	U
1,2-Dichloropropane	5.0	U
Ethylbenzene	5.0	U
Ethylene Dibromide	5.0	U
Ethyl methacrylate	5.0	U
2-Hexanone	50	U
Iodomethane	25	U
Isobutanol	200	U
Methacrylonitrile	100	U
Methylene Chloride	25	U
Methyl Ethyl Ketone	50	U
methyl isobutyl ketone	50	U
Methyl methacrylate	5.0	U
Pentachloroethane	25	U
Propionitrile	100	U
Styrene	5.0	U
4.4.2.2 Tahaablamadhana	E 0	1.1

130	
200	
100	
100	
5.0	
5.0	
5.0	
10	
5.0	
5.0	
5.0 5.0	
5.0 5.0	
5.0	
5.0	
5.0	
5.0	
5.0	
5.0	
5.0	
5.0	
5.0	
5.0	
5.0	
5.0	
5.0	
5.0	
5.0	
5.0	
5.0	
5.0	
5.0	
50	
25	
200	
100	
25	
50	
50	
5.0	
25	
100	
5.0	
5.0 5.0	
0.0	

U

5.0

1,1,2,2-Tetrachloroethane

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

PMA3S-0906-DUP

Lab Sample ID:

680-20272-5

Client Matrix:

Water

Date Sampled:

09/13/2006 1520

Date Received:

09/15/2006 1030

8260B Volatile Organic Compounds by GC/MS

Method:

8260B

Analysis Batch: 680-55616

Instrument ID:

GC/MS Volatiles - O

Preparation:

5030B

Lab File ID:

o0938.d

Dilution:

5.0

Run Type: DL

Initial Weight/Volume: Final Weight/Volume:

5 mL

Date Analyzed: Date Prepared: 09/22/2006 1459 09/22/2006 1459

5 mL

Analyte	Result (ug/L)	Qualifier	RL	
1,1,1,2-Tetrachloroethane	5.0	U	5.0	
Tetrachloroethene	5.0	U	5.0	
Toluene	5.0	U	5.0	
trans-1,4-Dichloro-2-butene	10	U	10	
trans-1,2-Dichloroethene	5.0	U	5.0	
trans-1,3-Dichloropropene	5.0	U	5.0	
1,1,2-Trichloroethane	5.0	U	5.0	
1,1,1-Trichloroethane	5.0	U	5.0	
Trichloroethene	5.0	U	5.0	
Trichlorofluoromethane	5.0	U	5.0	
1,2,3-Trichloropropane	5.0	U	5.0	
/inyl acetate	10	U	10	
Vinyl chloride	5.0	U	5.0	
Xylenes, Total	10	U .	10	
Surrogate	%Rec		Acceptance Limits	
4-Bromofluorobenzene	100	77 - 120		
Dibromofluoromethane	97	75 - 123		
Toluene-d8 (Surr)	98		79 - 122	

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

PMA1M-0906

Lab Sample ID:

680-20272-7

Client Matrix:

Water

Date Sampled:

09/15/2006 0850

Date Received:

09/16/2006 0845

8260B Volatile Organic Compounds by GC/MS

Method:

8260B

Analysis Batch: 680-55512

Instrument ID:

GC/MS Volatiles - O

Preparation:

5030B

Lab File ID:

o0910.d

25

Dilution:

25

Initial Weight/Volume:

5 mL

Date Analyzed: Date Prepared: 09/21/2006 1356 09/21/2006 1356 Final Weight/Volume:

5 mL

Analyte	Result (ug/L)	Qualifier	RL
Acetone	630	U	630
Acetonitrile	1000	U	1000
Acrolein	500	U	. 500
Acrylonitrîle	500	U	500
Benzene	1900		25
Bromoform	25	U	25
Bromomethane	25	U	25
Carbon disulfide	50	U	50
Carbon tetrachloride	25	U	25
Chlorobenzene	1400		25
2-Chloro-1,3-butadiene	25	U	25
Chlorodibromomethane	25	U	25
Chloroethane	25	U	25
Chloroform	25	U	25
Chloromethane .	25	บ	25
3-Chloro-1-propene	25	U	. 25
cis-1,3-Dichloropropene	25	U	25
1,2-Dibromo-3-Chloropropane	25	U T	2 5
Dibromomethane	25	Ü	25
,2-Dichlorobenzene	25	บ	25
,3-Dichlorobenzene	25	U	25
,4-Dichlorobenzene	25	U	25
Dichlorobromomethane	25	U	25
Dichlorodifluoromethane	25	U	25
I,2-Dichloroethane	25	U	25
I,1-Dichloroethane	25	Ū	25
1,1-Dichloroethene	25	Ü	25
,2-Dichloropropane	25	Ū	25
Ethylbenzene	25	Ū	25
Ethylene Dibromide	25	Ū	25
Ethyl methacrylate	25	Ū	25
2-Hexanone	250	บ	250
odomethane	130	Ü	130
sobutanol	1000	บั	1000
Methacrylonitrile	500	Ü	500
Methylene Chloride	130	Ŭ	130
Methyl Ethyl Ketone	250	Ü	250
nethyl isobutyl ketone	250	ŭ	250
Methyl methacrylate	25	ΰ	25
Pentachloroethane	130	บ	130
Propionitrile	500	Ŭ	500
Styrene	25	บ	25
1 4 0 0 T-4	25		25

U

25

1,1,2,2-Tetrachloroethane

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

PMA1M-0906

Lab Sample ID:

680-20272-7

Client Matrix:

Water

Date Sampled:

09/15/2006 0850

Date Received:

09/16/2006 0845

8260B Volatile Organic Compounds by GC/MS

Method:

Analyte

Toluene

8260B

Analysis Batch: 680-55512

Instrument ID:

GC/MS Volatiles - O

25

Preparation:

5030B

Lab File ID:

o0910.d

Dilution:

Initial Weight/Volume. Final Weight/Volume:

5 mL 5 mL

Date Analyzed:

25

09/21/2006 1356

Date Prepared:

1,1,1,2-Tetrachloroethane Tetrachloroethene

trans-1,4-Dichloro-2-butene trans-1,2-Dichloroethene trans-1,3-Dichloropropene 1,1,2-Trichloroethane 1,1,1-Trichloroethane Trichloroethene Trichlorofluoromethane 1,2,3-Trichloropropane

09/21/2006 1356

			•
	Result (ug/L)	Qualifier	RL
77744	25	U	25
	25	U	25
	25	U	25
	50	U	- 50
	25	U	25

U

Vinyl acetate	50	U	50
Vinyl chloride	25	U	25
Xylenes, Total	50	U	50
Surrogate	%Rec		Acceptance Limits
4-Bromofluorobenzene	95	- Commencement and Commencement of the Sept of the Sep	77 - 120
Dibromofluoromethane	97		75 - 123
Toluene-d8 (Surr)	97		79 - 122

25

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

PMA1S-0906

Lab Sample ID:

680-20272-10

Client Matrix:

Water

Date Sampled:

09/15/2006 1115

Date Received:

09/16/2006 0845

8260B Volatile Organic Compounds by GC/MS

Method:

8260B

Analysis Batch: 680-55512

Instrument ID:

GC/MS Volatiles - O

Preparation:

5030B

andigoto Batonii eee eee t

Lab File ID: 00

o0916.d

Dilution:

1.0

Initial Weight/Volume:

5 mL

Date Analyzed: Date Prepared: 09/21/2006 1635 09/21/2006 1635 Final Weight/Volume:

5 mL

Analyte	Result (ug/L)	Qualifier	RL
Acetone	25	U	25
Acetonitrile	40	U	40
Acrolein	20	U	20
Acrylonitrile	20	U	20
Benzene	12		1.0
Bromoform	1.0	U	1.0
Bromomethane	1.0	U	1.0
Carbon disulfide	2.0	U	2.0
Carbon tetrachloride	1.0	U	1.0
Chlorobenzene	2.2		1.0
2-Chloro-1,3-butadiene	1.0	U	1.0
Chlorodibromomethane	1.0	U	1.0
Chloroethane	1.0	U	1.0
Chloroform	1.0	U	1.0
Chloromethane	1.0	บ	1.0
3-Chloro-1-propene	1.0	U	1.0
cis-1,3-Dichloropropene	1.0	U	1.0
1,2-Dibromo-3-Chloropropane	1.0	U	1.0
Dibromomethane	1.0	U	1.0
1,2-Dichlorobenzene	1.0	U	1.0
1,3-Dichlorobenzene	1.0	U	1.0
1,4-Dichlorobenzene	1.0	U	1.0
Dichlorobromomethane	1.0	U	1.0
Dichlorodifluoromethane	1.0	U	1.0
1,2-Dichloroethane	1.0	U	1.0
1,1-Dichloroethane	1.0	U	1.0
1,1-Dichloroethene	1.0	U	1.0
1,2-Dichloropropane	1.0	U	1.0
Ethylbenzene	1.0	υ	1.0
Ethylene Dibromide	1.0	U	1.0
Ethyl methacrylate	1.0	U	1.0
2-Hexanone	10	U	10
Iodomethane	5.0	U	5.0
Isobutanol	40	U	40
Methacrylonitrile	20	U	20
Methylene Chloride	5.0	U	5.0
Methyl Ethyl Ketone	10	Ū	10
methyl isobutyl ketone	10	Ü	10
Methyl methacrylate	1.0	Ü	1.0
Pentachloroethane	5.0	บ	5.0
Propionitrile	20	Ü	20
Styrene	1.0	Ü	1.0
1,1,2,2-Tetrachloroethane	1.0	Ü	1.0

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

PMA1S-0906

Lab Sample ID:

680-20272-10

Client Matrix:

Date Sampled:

09/15/2006 1115

Water

Date Received:

09/16/2006 0845

8260B Volatile Organic Compounds by GC/MS

Method:

8260B

Analysis Batch: 680-55512

Instrument ID:

GC/MS Volatiles - O

Preparation:

5030B

Lab File ID:

o0916.d

Dilution:

1.0

Initial Weight/Volume:

Date Analyzed:

09/21/2006 1635

Final Weight/Volume:

5 mL 5 mL

Date Prepared:

09/21/2006 1635

Analyte	Result (ug/L)	Qualifier	RL	
1,1,1,2-Tetrachloroethane	1.0	U	1.0	
Tetrachloroethene	1.0	U	1.0	
Toluene	1.0	U	1.0	
trans-1,4-Dichloro-2-butene	2.0	U	2.0	
trans-1,2-Dichloroethene	1.0	บ	1.0	
trans-1,3-Dichloropropene	1.0	U	1.0	
1,1,2-Trichloroethane	1.0	U	1.0	
1,1,1-Trichloroethane	1.0	U	1.0	
Trichloroethene	1.0	U	1.0	
Trichlorofluoromethane	1.0	U	1.0	
1,2,3-Trichloropropane	1.0	U	1.0	
Vinyl acetate	2.0	U	2.0	
/inyl chloride	1.0	U	1.0	
Xylenes, Total	2.0	U	2.0	
Surrogate	%Rec	· ·	Acceptance Limits	
4-Bromofluorobenzene	96	77 - 120		
Dibromofluoromethane	95	75 - 123		
Toluene-d8 (Surr)	97	79 - 122		

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

TBB-0906

Lab Sample ID:

680-20272-11TB

Client Matrix:

Water

Date Sampled:

09/15/2006 0000

Date Received:

09/16/2006 0845

8260B Volatile Organic Compounds by GC/MS

Method:

8260B

Analysis Batch: 680-55512

Instrument ID:

GC/MS Volatiles - O

Preparation:

5030B

Lab File ID:

o0917.d

20

1.0

1.0

Dilution:

5 mL

1.0

Initial Weight/Volume:

Date Analyzed: Date Prepared:

09/21/2006 1701 09/21/2006 1701 Final Weight/Volume:

5 mL

Analyte	Result (ug/L)	Qualifier	RL
Acetone	25	U	25
Acetonitrile	40	U	40
Acrolein	20	U	20
Acrylonitrile	20	U	20
Benzene	1.0	U	1.0
Bromoform	1.0	U .	1.0
Bromomethane	1.0	υ	1.0
Carbon disulfide	2.0	U	2.0
Carbon tetrachloride	1.0	υ	1.0
Chlorobenzene	1.0	U	1.0
2-Chloro-1,3-butadiene	1.0	U	1.0
Chlorodibromomethane	1.0	U	1.0
Chloroethane	1.0	U	1.0
Chloroform	1.0	U	1.0
Chloromethane	1.0	U	1.0
3-Chloro-1-propene	1.0	U	1.0
cis-1,3-Dichloropropene	1.0	υ	1.0
1,2-Dibromo-3-Chloropropane	1.0	U	1.0
Dibromomethane	1.0	U .	1.0
1,2-Dichlorobenzene	1.0	υ	1.0
1,3-Dichlorobenzene	1.0	U	1.0
1,4-Dichlorobenzene	1.0	U	1.0
Dichlorobromomethane	1.0	U	1.0
Dichlorodifluoromethane	1.0	U	1.0
1,2-Dichloroethane	1.0	U	1.0
1,1-Dichloroethane	1.0	U	1.0
1,1-Dichloroethene	1.0	Ū	1.0
1,2-Dichloropropane	1.0	ប	1.0
Ethylbenzene	1.0	Ų	1.0
Ethylene Dibromide	1.0	U	1.0
Ethyl methacrylate	1.0	U	1.0
2-Hexanone	10	U	10
lodomethane	5.0	U	5.0
Isobutanol	40	U	40
Methacrylonitrile	20	U	20
Methylene Chloride	5.0	Ü	5.0
Methyl Ethyl Ketone	10	Ū	10
methyl isobutyl ketone	10	Ū	10
Methyl methacrylate	1.0	Ŭ	1.0
Pentachloroethane	5.0	Ü	5.0
- CARGOTHOLOGICHO	0.0		20

20

1.0

1.0

U

U

U

1,1,2,2-Tetrachloroethane

Propionitrile

Styrene

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

TBB-0906

Lab Sample ID:

680-20272-11TB

Client Matrix:

Water

Date Sampled:

09/15/2006 0000

Date Received:

09/16/2006 0845

8260B Volatile Organic Compounds by GC/MS

Method:

8260B

Analysis Batch: 680-55512

Instrument ID:

GC/MS Volatiles - O

RL

1.0

1.0

1.0

2.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

2.0

1.0

2.0

Preparation:

5030B

Lab File ID:

o0917.d

Dilution:

1.0

Initial Weight/Volume:

5 mL

Date Analyzed: Date Prepared:

09/21/2006 1701 09/21/2006 1701 Final Weight/Volume:

5 mL

Ar	al	yte							
1 1	1	2_7	Cotra	chle	rne	thar	10	 	

Result (ug/L) 1.0 1.0 Tetrachloroethene 1.0 Toluene 2.0

trans-1,4-Dichloro-2-butene trans-1,2-Dichloroethene 1.0 1.0 trans-1,3-Dichloropropene 1.0 1,1,2-Trichloroethane 1,1,1-Trichloroethane

Trichloroethene 1.0 Trichlorofluoromethane 1,2,3-Trichloropropane 1.0 2.0 /inyl acetate Vinyl chloride 1.0 Xylenes, Total 2.0

Surrogate 4-Bromofluorobenzene Dibromofluoromethane Toluene-d8 (Surr)

U U U U U 1.0 IJ 1.0 U U U U

U

U

Qualifier

U

U

%Rec 96 97 97

77 - 120 75 - 123 79 - 122

Acceptance Limits

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

PMA3M-0906

Lab Sample ID:

680-20272-12

Client Matrix:

Water

Date Sampled:

09/14/2006 1010

Date Received:

09/16/2006 0845

8260B Volatile Organic Compounds by GC/MS

Method:

8260B

Analysis Batch: 680-55512

Instrument ID:

GC/MS Volatiles - O

Preparation:

5030B

Lab File ID:

o0922.d

Dilution:

10

Initial Weight/Volume:

5 mL

Date Analyzed:

09/21/2006 1914

Final Weight/Volume:

5 mL

Date Prepared:

09/21/2006 1914

Analyte	Result (ug/L)	Qualifier	RL
Acetone	250	U	. 250
Acetonitrile	400	U	400
Acrolein	200	U	200
Acrylonitrile	200	U	200
Benzene	1500		10
Bromoform	10	U .	10
Bromomethane	10	U	· 10
Carbon disulfide	20	U	20
Carbon tetrachloride	10	ប	10
Chlorobenzene	1300		10
2-Chloro-1,3-butadiene	10	U ·	10
Chlorodibromomethane	10	U	10
Chloroethane	10	U	10
Chloroform	10	U ·	10
Chloromethane	10	υ	10
3-Chloro-1-propene	10	U	10
cis-1,3-Dichloropropene	10	U	10
1,2-Dibromo-3-Chloropropane	10	U	10
Dibromomethane	10	U	10
1,3-Dichlorobenzene	50		10
1,4-Dichlorobenzene	600		10
1,2-Dichlorobenzene	110		10
Dichlorobromomethane	10	U	10
Dichlorodifluoromethane	10	U	10
1,2-Dichloroethane	10	U	10
1,1-Dichloroethane	10	U	10
1,1-Dichloroethene	10	U	10
1,2-Dichloropropane	10	U	10
Ethylbenzene	92		10
Ethylene Dibromide	10	บ	10
Ethyl methacrylate	10	U	10
2-Hexanone	100	U .	100
lodomethane	50	U	50
Isobutanoi	400	U	400
Methacrylonitrile	200	U	200
Methylene Chloride	50	U	50
Methyl Ethyl Ketone	100	U	100
methyl isobutyl ketone	100	U	100
Methyl methacrylate	10	U	10
Pentachloroethane	50	U	50
Propionitrile	200	U	200
Styrene	10	U	10
1,1,2,2-Tetrachloroethane	10	U	10

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

PMA3M-0906

Lab Sample ID:

680-20272-12

Client Matrix:

Water

Date Sampled:

09/14/2006 1010

Date Received:

09/16/2006 0845

8260B Volatile Organic Compounds by GC/MS

Method:

8260B

Analysis Batch: 680-55512

Instrument ID:

GC/MS Volatiles - O

Preparation:

5030B

Lab File ID:

o0922.d

Dilution:

5 mL

Date Analyzed:

10

Initial Weight/Volume:

Date Prepared:

09/21/2006 1914 09/21/2006 1914 Final Weight/Volume:

5 mL

Analyte	Result (ug/L)	Qualifier	RL
1,1,1,2-Tetrachloroethane	10	U	10
Tetrachloroethene	ໍ 10	U	10
Toluene	16		10
trans-1,4-Dichloro-2-butene	20	U	20
trans-1,2-Dichloroethene	10	U	10
trans-1,3-Dichloropropene	10	U	10
1,1,2-Trichloroethane	10	U	10
1,1,1-Trichloroethane	10	U	10
Trichloroethene	10	U	10
Trichlorofluoromethane	10	U	10
1,2,3-Trichloropropane	10	U	10
Vinyl acetate	20	U	20
Vinyl chloride	10	U	10
Xylenes, Total	280		20
Surrogate	%Rec		Acceptance Limits
4-Bromofluorobenzene	97		77 - 120
Dibromofluoromethane	95		75 - 123
Toluene-d8 (Surr)	99		79 - 122

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

PMA2M-0906

Lab Sample ID:

680-20272-14

Client Matrix:

Water

Date Sampled:

09/14/2006 1220

Date Received:

09/16/2006 0845

8260B Volatile Organic Compounds by GC/MS

Method:

8260B

Analysis Batch: 680-55512

Instrument ID:

GC/MS Volatiles - O

Preparation:

5030B

Lab File ID:

o0913.d

50

Dilution:

50

Initial Weight/Volume:

5 mL

Date Analyzed:

09/21/2006 1515

Final Weight/Volume:

5 mL

Date	Analyzed.	
Date	Prepared:	

09/21/2006 1515

Analyte	Result (ug/L)	Qualifier	RL
Acetone	1300	U	1300
Acetonitrile	2000	U	2000
Acrolein	1000	υ	1000
Acrylonitrile	1000	U	1000
Benzene	4800		50 .
Bromoform	50	U	50
Bromomethane	50	U	50
Carbon disulfide	100	U	100
Carbon tetrachloride	50	U	50
Chlorobenzene	7300		50
2-Chloro-1,3-butadiene	50	U	50
Chlorodibromomethane	50	υ	50
Chloroethane	50	U	50
Chloroform	50	U	50
Chloromethane	50	υ	50
3-Chloro-1-propene	50	U	50
cis-1,3-Dichloropropene	50	U	50
1,2-Dibromo-3-Chloropropane	50	U .	50
Dibromomethane	50	U	50
1,2-Dichlorobenzene	50	ប	50
1,3-Dichlorobenzene	50	U	50
1,4-Dichlorobenzene	50	U	50
Dichlorobromomethane	50	U	50
Dichlorodifluoromethane	50	U	50
1,2-Dichloroethane	50	U	50
1,1-Dichloroethane	50	U	50
1,1-Dichloroethene	50	U	50
1,2-Dichloropropane	50	U	50
Ethylbenzene	50	U	50
Ethylene Dibromide	50	· U	50
Ethyl methacrylate	50	U	50
2-Hexanone	500	U	500
lodomethane	250	U	250
Isobutanol	2000	U	2000
Methacrylonitrile	1000	U	1000
Methylene Chloride	250	U	250
Methyl Ethyl Ketone	500	U	500
methyl isobutyl ketone	500	U	500
Methyl methacrylate	50	U	50
Pentachloroethane	250	U	250
Propionitrile	1000	U	1000
Styréne	50	U	50
4.4.0.0 T-4	50		50

50

U

1,1,2,2-Tetrachloroethane

Client: Solutia Inc.

Job Number 680-20272-1

Sdg Number: KPM003

Client Sample ID:

PMA2M-0906

Lab Sample ID:

680-20272-14

Client Matrix:

Water

Date Sampled:

09/14/2006 1220

Date Received:

09/16/2006 0845

8260B Volatile Organic Compounds by GC/MS

Method:

8260B

Analysis Batch: 680-55512

Instrument ID:

GC/MS Volatiles - O

Preparation:

5030B

Lab File ID:

o0913.d

Dilution:

50

Initial Weight/Volume:

5 mL

Date Analyzed: Date Prepared: 09/21/2006 1515 09/21/2006 1515 Final Weight/Volume:

5 mL

Analyte	Result (ug/L)	Qualifier	RL
1,1,1,2-Tetrachloroethane	50	U	50
Tetrachloroethene	50	U	50
Toluene	50	U	50
trans-1,4-Dichloro-2-butene	100	U	100
trans-1,2-Dichloroethene	50	U	50
trans-1,3-Dichloropropene	50	U	50
1,1,2-Trichloroethane	50	U	50
1,1,1-Trichloroethane	50	U	50
Trichloroethene	50	U	50
Trichlorofluoromethane	50	U	50
1,2,3-Trichloropropane	50	U	50
/inyl acetate	100	U	100
Vinyl chloride	50	U	50
Xylenes, Total	100	U	100
Surrogate	%Rec		Acceptance Limits
4-Bromofluorobenzene	98		77 - 120
Dibromofluoromethane	97		75 - 123
Toluene-d8 (Surr)	99		79 - 122

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

PMA2S-0906-EB

Lab Sample ID:

680-20272-16

Client Matrix: Water

0272-16

Date Sampled:

09/14/2006 1400

Date Received:

09/16/2006 0845

8260B Volatile Organic Compounds by GC/MS

Method:

8260B

Analysis Batch: 680-55512

instrument ID:

GC/MS Volatiles - O

Preparation:

5030B

Analysis Daton. 000-000 tz

Lab File ID:

o0918.d

1.0

Dilution:

1.0

Initial Weight/Volume:

5 mL

Date Analyzed:

09/21/2006 1728

Final Weight/Volume:

5 mL

Date Prepared:

09/21/2006 1728

Analyte	Result (ug/L)	Qualifier	RL
Acetone	25	U	25
Acetonitrile	40	U	40
Acrolein	20	U	20
Acrylonitrile	. 20	U	20
Benzene	1.0		1.0
Bromoform	1.0	U	1.0
Bromomethane	1.0	U	1.0
Carbon disulfide	2.0	U	2.0
Carbon tetrachloride	1.0	U	1.0
Chlorobenzene	1.0	IJ	1.0
2-Chloro-1,3-butadiene	1.0	U	1.0
Chlorodibromomethane	1.0	U	1.0
Chloroethane	1.0	U	1.0
Chloroform	1.0	U	1.0
Chloromethane	1.0	U	1.0
3-Chioro-1-propene	1.0	U	1.0
cis-1,3-Dichtoropropene	1.0	U	1.0
1,2-Dibromo-3-Chloropropane	1.0	U	1.0
Dibromomethane	1.0	U	1.0
1,2-Dichlorobenzene	1.0	U	1.0
1,3-Dichlorobenzene	1.0	U	1.0
1,4-Dichlorobenzene	1.0	U	1.0
Dichlorobromomethane	1.0	U	1.0
Dichlorodifluoromethane	1.0	U	1.0
1,2-Dichloroethane	1.0	U	1.0
1,1-Dichloroethane	1.0	U	1.0
1,1-Dichloroethene	1.0	U	1.0
1,2-Dichloropropane	1.0	U	1.0
Ethylbenzene	1.0	U	1.0
Ethylene Dibromide	1.0	U	1.0
Ethyl methacrylate	1.0	U	1.0
2-Hexanone	10	U	10
lodomethane	5.0	U	5.0
Isobutanol	40	Ü	40
Methacrylonitrile	20	Ū	20
Methylene Chloride	5.0	Ü	5.0
Methyl Ethyl Ketone	10	Ü	10
methyl isobutyl ketone	10	Ŭ	10
Methyl methacrylate	. 1.0	ŭ	1.0
Pentachloroethane	5.0	ŭ	5.0
Propionitrile	20	ŭ	20
Styrene	1.0	บั	1.0
	1.0	-	1.0

1.0

U

1,1,2,2-Tetrachloroethane

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

PMA2S-0906-EB

Lab Sample ID:

680-20272-16

Client Matrix:

Water

Date Sampled:

09/14/2006 1400

Date Received:

09/16/2006 0845

8260B Volatile Organic Compounds by GC/MS

Method:

Analyte

Toluene

8260B

Analysis Batch: 680-55512

Instrument ID:

GC/MS Volatiles - O

Preparation:

5030B

Lab File ID:

o0918.d

Initial Weight/Volume:

5 mL

Dilution: Date Analyzed:

1.0 09/21/2006 1728

Final Weight/Volume:

5 mL

Date Prepared:

Tetrachloroethene

1,1,1,2-Tetrachioroethane

trans-1,4-Dichloro-2-butene

trans-1,2-Dichloroethene

1,1,2-Trichloroethane

1,1,1-Trichloroethane

Trichlorofluoromethane

1,2,3-Trichloropropane

Trichloroethene

Vinyl acetate

Vinyl chloride

trans-1,3-Dichloropropene

09/21/2006 1728

Result (ug/L) Qualifier RL 1.0 U 1.0 1.0 U 1.0 1.0 U 1.0 U 2.0 2.0 U 1.0 1.0 U 1.0 1.0 U 1.0 1.0 1.0 U 1.0 U 1.0 1.0 U 1.0 1.0 U 1.0 1.0 U 2.0 2.0 1.0 U 1.0 20 н 2.0

Xylenes, Total	2.0	U	2.0
Surrogate	%Rec		Acceptance Limits
4-Bromofluorobenzene	97		77 - 120
Dibromofluoromethane	92		75 - 123
Toluene-d8 (Surr)	. 96		79 - 122

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

PMA2S-0906

Lab Sample ID:

680-20272-18

Client Matrix:

Water

Date Sampled:

09/14/2006 1525

Date Received:

09/16/2006 0845

8260B Volatile Organic Compounds by GC/MS

Method:

8260B

Analysis Batch: 680-55512

Instrument ID:

GC/MS Volatiles - O

Preparation:

5030B

Lab File ID:

o0920.d

Dilution:

1.0

Initial Weight/Volume:

5 mL

Date Analyzed: Date Prepared:

09/21/2006 1821 09/21/2006 1821 Final Weight/Volume:

5 mL

Analyte	
Acetone	

Analyte	Result (ug/L)	Qualifier
Acetone	25	U
Acetonitrile	40	U
Acrolein	20	U
Acrylonitrile	20	บ
Benzene	16	
Bromoform	1.0	U
Bromomethane	1.0	U
Carbon disulfide	2.0	U
Carbon tetrachloride	1.0	U
Chlorobenzene	1.1	•
2-Chloro-1,3-butadiene	1.0	U
Chlorodibromomethane	1.0	U
Chloroethane	1.0	U
Chloroform	1.1	
Chloromethane	1.0	U
3-Chloro-1-propene	1.0	U
cis-1,3-Dichloropropene	1.0	U
1,2-Dibromo-3-Chloropropane	1.0	U
Dibromomethane	1.0	U
1,2-Dichlorobenzene	1.0	U
1,3-Dichlorobenzene	1.0	U
1,4-Dichlorobenzene	1.0	U
Dichlorobromomethane	1.0	U
Dichlorodifluoromethane	1.0	U
1,2-Dichloroethane	1.0	U
1,1-Dichloroethane	1.0	U
1,1-Dichloroethene	1.0	U
1,2-Dichloropropane	1.0	U
Ethylbenzene	1.0	U
Ethylene Dibromide	1.0	υ
Ethyl methacrylate	1.0	U
2-Hexanone	10	U
Iodomethane	5.0	U
Isobutanol	40	U
Methacrylonitrile	20	U
Methylene Chloride	5.0	U
Methyl Ethyl Ketone	10	U
methyl isobutyl ketone	10	U
Methyl methacrylate	1.0	U
Pontachlomethane	5.0	11

Acetonitrile	40	U	40
Acrolein	20	U	20
Acrylonitrile	20	U	20
Benzene	16		1.0
Bromoform	1.0	U	1.0
Bromomethane	1.0	U	1.0
Carbon disulfide	2.0	U	2.0
Carbon tetrachloride	1.0	U	1.0
Chlorobenzene	1.1	•	1.0
2-Chloro-1,3-butadiene	1.0	U	1.0
Chlorodibromomethane	1.0	U	1.0
Chloroethane	1.0	U	1.0
Chloroform	1.1		1.0
Chloromethane	1.0	U	1.0
3-Chloro-1-propene	1.0	U	1.0
cis-1,3-Dichloropropene	1.0	U	1.0
1,2-Dibromo-3-Chloropropane	1.0	U	1.0
Dibromomethane	1.0	U	1.0
1,2-Dichlorobenzene	1.0	U	1.0
1,3-Dichlorobenzene	1.0	υ	1.0
1,4-Dichlorobenzene	1.0	U	1.0
Dichlorobromomethane	1.0	U	1.0
Dichlorodifluoromethane	1.0	U	1.0
1,2-Dichloroethane	1.0	U	1.0
1,1-Dichloroethane	1.0	U	1:0
1,1-Dichloroethene	1.0	U	1.0
1,2-Dichloropropane	1.0	U	1.0
Ethylbenzene	1.0	U	1.0
Ethylene Dibromide	1.0	U	1.0
Ethyl methacrylate	1.0	U	1.0
2-Hexanone	10	U	10
Iodomethane	5.0	U	5.0
Isobutanol	40	U	40
Methacrylonitrile	20	U	20
Methylene Chloride	5.0	U	5.0
Methyl Ethyl Ketone	10	U	. 10
methyl isobutyl ketone	10	U	10
Methyl methacrylate	1.0	U	1.0
Pentachloroethane	5.0	U	5.0
Propionitrile	20	U	20
Styrene	1.0	U	1.0
1,1,2,2-Tetrachloroethane	1.0	U	1.0
			•

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

PMA2S-0906

Lab Sample ID:

680-20272-18

Client Matrix:

Water

Date Sampled:

09/14/2006 1525

Date Received:

09/16/2006 0845

8260B Volatile Organic Compounds by GC/MS

Method:

8260B

Analysis Batch: 680-55512

Instrument ID:

GC/MS Volatiles - O

Preparation:

5030B

Lab File ID:

Dilution:

o0920.d

1.0

Initial Weight/Volume:

5 mL

Date Analyzed: Date Prepared: 09/21/2006 1821 09/21/2006 1821 Final Weight/Volume:

5 mL

Analyte	Result (ug/L)	Qualifier	· RL
1,1,1,2-Tetrachloroethane	1.0	U	1.0
Tetrachloroethene	1.0	U -	1.0
Toluene	1.0	U	1.0
trans-1,4-Dichloro-2-butene	2.0	U	2.0
trans-1,2-Dichloroethene	1.0	U	1.0
trans-1,3-Dichloropropene	1.0	U	1.0
1,1,2-Trichloroethane	1.0	U	1.0
1,1,1-Trichloroethane	1.0	U	1.0
Trichloroethene	1.0	U	1.0
Trichlorofluoromethane	1.0	U	1.0
1,2,3-Trichloropropane	1.0	U	1.0
inyl acetate	2.0	U	2.0
Vinyl chloride	1.0	U	1.0
Xylenes, Total	2.0	U	2.0
Surrogate	%Rec		Acceptance Limits
4-Bromofluorobenzene	99		77 - 120
Dibromofluoromethane	95		75 - 123
Toluene-d8 (Surr)	96		79 - 122

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

TB7-0906

Lab Sample ID:

680-20272-20TB

Client Matrix:

Water

Date Sampled:

09/14/2006 0000

Date Received:

09/16/2006 0845

8260B Volatile Organic Compounds by GC/MS

Method:

8260B

Analysis Batch: 680-55512

Instrument ID:

GC/MS Volatiles - O

1.0

Preparation:

5030B

Lab File ID:

o0919.d

Dilution:

1.0

Initial Weight/Volume:

5 mL

Date Analyzed:

09/21/2006 1755

Final Weight/Volume:

5 mL

Date Prepared:

09/21/2006 1755

Analyte	Result (ug/L)	Qualifier	RL
Acetone	25	U	25
Acetonitrile	40	U	40
Acrolein	20	U	20
Acrylonitrile	20	U	20
Benzene	1.0	U	1.0
Bromoform	1.0	U	1.0
Bromomethane	1.0	U	1.0
Carbon disulfide	2.0	U	2.0
Carbon tetrachloride	1.0	U	1.0
Chlorobenzene	1.0	U	1.0
2-Chloro-1,3-butadiene	1.0	U	1.0 -
Chlorodibromomethane	1.0	U	1.0
Chloroethane	1.0	U	1.0
Chloroform	1.0	U	1.0
Chloromethane	1.0	U	1.0
3-Chloro-1-propene	1.0	U	1.0
cis-1,3-Dichloropropene	1.0	U	1.0
1,2-Dibromo-3-Chloropropane	1.0	U	1.0
Dibromomethane	1.0	U	1.0
1,2-Dichlorobenzene	1.0	U	1.0
1,3-Dichlorobenzene	1.0	U	1.0
1,4-Dichlorobenzene	1.0	U	1.0
Dichlorobromomethane	1.0	U	1.0
Dichlorodifluoromethane	1.0	ป	1.0
1,2-Dichloroethane	1.0	U	1.0
1,1-Dichloroethane	1.0	U	1.0
1,1-Dichloroethene	1.0	U	1.0
1,2-Dichloropropane	1.0	U	1.0
Ethylbenzene	1.0	U	1.0
Ethylene Dibromide	1.0	U	1.0
Ethyl methacrylate	1.0	υ	1.0
2-Hexanone	10	U	10
Iodomethane	5.0	U	5.0
Isobutanol	40	U	40
Methacrylonitrile	20	U	. 20
Methylene Chloride	5.0	U	5.0
Methyl Ethyl Ketone	10	U	10
methyl isobutyl ketone	10	U	10
Methyl methacrylate	1.0	ប	1.0
Pentachloroethane	5.0	U	5.0
Propionitrile	20	Ü	20
Styrene	1.0	U	1.0
			4.4

1.0

U

1,1,2,2-Tetrachloroethane

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

TB7-0906

Lab Sample ID:

680-20272-20TB

Client Matrix:

Water

Date Sampled:

09/14/2006 0000

Date Received:

09/16/2006 0845

8260B Volatile Organic Compounds by GC/MS

Method:

8260B

Analysis Batch: 680-55512

Instrument ID:

GC/MS Volatiles - O

Preparation:

5030B

Lab File ID:

o0919.d

79 - 122

5 mL

Dilution: Date Analyzed:

1.0 09/21/2006 1755 Initial Weight/Volume: Final Weight/Volume:

5 mL

Date Prepared:

Toluene-d8 (Surr)

09/21/2006 1755

Analyte	Result (ug/L)	Qualifier	RL
1,1,1,2-Tetrachloroethane	1.0	U	1.0
Tetrachloroethene	1.0	U	1.0
Toluene	1.0	U	1.0
trans-1,4-Dichloro-2-butene	2.0	U	2.0
trans-1,2-Dichloroethene	1.0	U	1.0
trans-1,3-Dichloropropene	1.0	U	1.0
1,1,2-Trichloroethane	1.0	U	1.0
1,1,1-Trichloroethane	1.0	U	1.0
Trichloroethene	1.0	U	1.0
Trichlorofluoromethane	1.0	U	1.0
1,2,3-Trichloropropane	1.0	U	1.0
/inyl acetate	2.0	U .	2.0
Vinyl chloride	1.0	U	1.0
Xylenes, Total	2.0	U	2.0
Surrogate	%Rec	Acceptance Limits	
4-Bromofluorobenzene	95	77 - 120	
Dibromofluoromethane	97	97 75 - 123	
 			·

97

		·	
\			

	,		·		
	e e				
					-

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

PMA3S-0906

Lab Sample ID:

Date Analyzed:

Date Prepared:

680-20272-3

Client Matrix:

Water

Date Sampled:

09/13/2006 1520

Date Received:

09/15/2006 1030

680 Polychlorinated Biphenyls by GCMS

Method:

680

Analysis Batch: 680-56387

Instrument ID:

GC/MS SemiVolatiles - F

Preparation: Dilution:

680_P_Liquid

Prep Batch: 680-55503

Lab File ID:

N/A

1.0

Initial Weight/Volume: Final Weight/Volume: 500 mL 0.5 mL

09/22/2006 1400 09/21/2006 1006

Analyte	Result (ug/L)	Qualifier	RL
Monochlorobiphenyl	0.25		0.10
Dichlorobiphenyl	0.10	U	0.10
Trichlorobiphenyl	0.10	U	0.10
Tetrachlorobiphenyl	0.20	U	0.20
Pentachlorobiphenyl	0.20	U	0.20
lexachlorobiphenyl	0.20	U	0.20
leptachlorobiphenyl	0.30	U	0.30
Octachlorobiphenyl	0.30	U	0.30
lonachlorobiphenyl	0.50	U	0.50
DCB Decachlorobiphenyl	0.50	·U	0.50
Surrogate	%Rec		Acceptance Limits
ecachlorobiphenyl-13C12	70		44 - 104

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

PMA3S-0906-F

Lab Sample ID:

680-20272-4

Client Matrix:

Water

Date Sampled:

09/13/2006 1520

Date Received:

09/15/2006 1030

680 Polychlorinated Biphenyls by GCMS

Method:

680

Analysis Batch: 680-56007

Instrument ID:

GC/MS SemiVolatiles - F

Preparation:

680_P_Liquid

Prep Batch: 680-55368

Lab File ID:

N/A

Dilution:

1.0

Initial Weight/Volume:

1060 mL

Date Analyzed:

Final Weight/Volume:

1 mL

Date Prepared:

09/26/2006 1054

09/20/2006 0851

Injection Volume:

Qualifier RL Result (ug/L) Analyte 0.094 Monochlorobiphenyl 0.094 0.094 U 0.094 Dichlorobiphenyl 0.094 U 0.094 Trichlorobiphenyl U 0.19 0.19 Tetrachlorobiphenyl U 0.19 0.19 Pentachlorobiphenyl 0.19 U 0.19 Hexachlorobiphenyl Heptachlorobiphenyl 0.28 U 0.28 0.28 U 0.28 Octachlorobiphenyl U 0.47 0.47 Nonachlorobiphenyl 0.47 U DCB Decachlorobiphenyl 0.47 Acceptance Limits %Rec Surrogate

Decachlorobiphenyl-13C12

69

44 - 104

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

PMA3S-0906-DUP

Lab Sample ID:

680-20272-5

Client Matrix:

Water

Date Sampled:

09/13/2006 1520

Date Received:

09/15/2006 1030

680 Polychlorinated Biphenyls by GCMS

Method:

680

680_P_Liquid

Analysis Batch: 680-56007

Instrument ID:

GC/MS SemiVolatiles - F

Preparation:

Lab File ID:

Dilution:

Date Analyzed:

Date Prepared:

1.0

Prep Batch: 680-55368

Initial Weight/Volume:

N/A

1060 mL

09/26/2006 1127

09/20/2006 0851

Final Weight/Volume:

1 mL

Analyte	Result (ug/L)	Qualifier	RL
Monochlorobiphenyl	0.32		0.094
Dichlorobiphenyl	0.094	U	0.094
Trichlorobiphenyl	0.094	U	0.094
Tetrachlorobiphenyl	0.19	U	0.19
Pentachlorobiphenyl	0.19	U	0.19
Hexachlorobiphenyl	0.19	ប	0.19
Heptachlorobiphenyl	0.28	U ·	0.28
Octachlorobiphenyl	0.28	U	0.28
Nonachlorobiphenyl	0.47	U	0.47
DCB Decachlorobiphenyl	0.47	U	0.47
Surrogate	%Rec		Acceptance Limits
Decachlorobiphenyl-13C12	68		44 - 104

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

PMA3S-0906-F-DUP

Lab Sample ID:

680-20272-6

Client Matrix:

Water

Date Sampled:

09/13/2006 1520

Date Received:

09/15/2006 1030

680 Polychlorinated Biphenyls by GCMS

Method:

680

Analysis Batch: 680-56007

Instrument ID:

GC/MS SemiVolatiles - F

Preparation:

680_P_Liquid

Prep Batch: 680-55368

Lab File ID:

Dilution:

1.0

Initial Weight/Volume:

1040 mL 1 mL

Date Analyzed: Date Prepared: 09/26/2006 1201 09/20/2006 0851 Final Weight/Volume: Injection Volume:

RL Analyte Result (ug/L) Qualifier 0.096 Monochlorobiphenyl 0.096 U 0.096 U 0.096 Dichlorobiphenyl 0.096 U 0.096 Trichlorobiphenyl Tetrachlorobiphenyl 0.19 U 0.19 U Pentachlorobiphenyl 0.19 0.19 U Hexachlorobiphenyl 0.19 0.19 U Heptachlorobiphenyl 0.29 0.29 U Octachlorobiphenyl 0.29 0.29 Nonachlorobiphenyl 0.48 U 0.48 DCB Decachlorobiphenyl 0.48 U 0.48 %Rec Acceptance Limits Surrogate

Decachlorobiphenyl-13C12

68

44 - 104

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

PMA1M-0906

Lab Sample ID:

680-20272-7

Client Matrix:

Water

Date Sampled:

09/15/2006 0850

Date Received:

09/16/2006 0845

680 Polychlorinated Biphenyls by GCMS

Method:

680

680 P Liquid

Analysis Batch: 680-56007

Instrument ID:

GC/MS SemiVolatiles - F

Preparation: Dilution:

Decachlorobiphenyl-13C12

Prep Batch: 680-55368

Lab File ID:

44 - 104

09/25/2006 1424

09/20/2006 0851

Date Analyzed: Date Prepared: 1.0

Initial Weight/Volume: Final Weight/Volume:

1060 mL 1 mL

Injection Volume:

Analyte Result (ug/L) Qualifier RL. Monochlorobiphenyl 0.24 0.094 Dichlorobiphenyl 0.094 U 0.094 Trichlorobiphenyl 0.094 U 0.094 Tetrachlorobiphenyl 0.19 U 0.19 Pentachlorobiphenyl 0.19 U 0.19 Hexachlorobiphenyl 0.19 U 0.19 Heptachlorobiphenyl 0.28 U 0.28 Octachlorobiphenyl 0.28 U 0.28 Nonachlorobiphenyl 0.47 U 0.47 DCB Decachlorobiphenyl 0.47 U 0.47 Surrogate %Rec Acceptance Limits

63

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

PMA1M-0906-F

Lab Sample ID:

680-20272-8

Client Matrix:

Water

680_P_Liquid

09/25/2006 1459

09/20/2006 0851

Date Sampled:

09/15/2006 0850

Date Received:

09/16/2006 0845

680 Polychlorinated Biphenyls by GCMS

Method:

Dilution:

Preparation:

Date Analyzed:

Date Prepared:

680

1.0

Anal

Analysis Batch: 680-56007

Prep Batch: 680-55368

Instrument ID: Lab File ID: GC/MS SemiVolatiles - F

Initial Weight/Volume:

. .

N/A

Final Weight/Volume:

1060 mL 1 mL

Analyte	Result (ug/L)	Qualifier	RL
Monochlorobiphenyl	0.094	U	0.094
Dichlorobiphenyl	0.094	U	0.094
Trichlorobiphenyl	0.094	U	0.094
Tetrachlorobiphenyl	0.19	U	0.19
Pentachlorobiphenyl	0.19	U	0.19
lexachlorobiphenyl	0.19	U	0.19
leptachlorobiphenyl	0.28	U	0.28
Octachlorobiphenyl	0.28	U	0.28
lonachlorobiphenyl	0.47	U	0.47
DCB Decachlorobiphenyl	0.47	U	0.47
Surrogate	%Rec		Acceptance Limits
Decachlorobiphenyl-13C12	67		44 - 104

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

PMA1S-0906-F

Lab Sample ID:

680-20272-9

Client Matrix:

Water

Date Sampled:

09/15/2006 1115

Date Received:

09/16/2006 0845

680 Polychlorinated Biphenyls by GCMS

Method:

680

680_P_Liquid

Analysis Batch: 680-56007

Instrument ID:

GC/MS SemiVolatiles - F

Preparation:

Prep Batch: 680-55368

Lab File ID:

N/A

1.0

Initial Weight/Volume:

1040 mL

Dilution: Date Analyzed:

09/26/2006 1235

Final Weight/Volume:

1 mL

Date Prepared:

09/20/2006 0851

Analyte	Result (ug/L)	Qualifier	RL
Monochlorobiphenyl	0.096	U	0.096
Dichlorobiphenyl	0.096	U	0.096
Trichlorobiphenyl	0.096	U	0.096
Tetrachlorobiphenyl	0.19	ប	0.19
Pentachlorobiphenyl	0.19	U	0.19
Hexachlorobiphenyl	0.19	U	0.19
Heptachlorobiphenyl	0.29	U	0.29
Octachlorobiphenyl	0.29	U	0.29
Nonachlorobiphenyl	0.48	U	0.48
DCB Decachlorobiphenyl	0.48	U	0.48
Surrogate	%Rec		Acceptance Limits
Decachlorobiphenyl-13C12	77	And the second s	44 - 104

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

PMA1S-0906

Lab Sample ID:

680-20272-10

Client Matrix:

Water

Date Sampled:

09/15/2006 1115

Date Received:

09/16/2006 0845

680 Polychlorinated Biphenyls by GCMS

Method:

680

Analysis Batch: 680-56007

Instrument ID:

GC/MS SemiVolatiles - F

Preparation:

680_P_Liquid

Prep Batch: 680-55368

Lab File ID:

1040 mL

Dilution: Date Analyzed: 1.0

Initial Weight/Volume: Final Weight/Volume:

1 mL

Date Prepared:

09/26/2006 1309 09/20/2006 0851

Analyte	Result (ug/L)	Qualifier	RL
Monochlorobiphenyl	0.096	U	0.096
Dichlorobiphenyl	0.096	U	0.096
Trichlorobiphenyl	0.096	U	0.096
Tetrachlorobiphenyl	0.19	U .	0.19
Pentachlorobiphenyl	0.19	U	0.19
Hexachlorobiphenyl	0.19	U	0.19
-leptachlorobiphenyl	0.29	U	0.29
Octachlorobiphenyl	0.29	บ	0.29
Nonachlorobiphenyl	0.48	U	0.48
DCB Decachlorobiphenyl	0.48	U	0.48
Surrogate	%Rec		Acceptance Limits
Decachlorobiphenyl-13C12	59		44 - 104

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

PMA3M-0906

Lab Sample ID:

680-20272-12

Client Matrix:

Water

Date Sampled:

09/14/2006 1010

Date Received:

09/16/2006 0845

680 Polychlorinated Biphenyls by GCMS

Method:

680

680_P_Liquid

Analysis Batch: 680-56007

Instrument ID:

GC/MS SemiVolatiles - F

Preparation:

Prep Batch: 680-55368

Lab File ID:

N/A

Dilution:

1.0

Initial Weight/Volume:

1060 mL 1 mL

Date Analyzed: 09/26/2006 1344 09/20/2006 0851 Date Prepared:

Final Weight/Volume:

Analyte	Result (ug/L)	Qualifier	RL.
Monochlorobiphenyl	1.8		0.094
Dichlorobiphenyl	0.14		0.094
Trichlorobiphenyl	0.094	U	0.094
Tetrachlorobiphenyl	0.19	IJ	0.19
Pentachlorobiphenyl	0.19	U	0.19
Hexachlorobiphenyl	0.19	υ	0.19
Heptachlorobiphenyl	0.28	บ	0.28
Octachlorobiphenyl	0.28	U	0.28
Nonachlorobiphenyl	0.47	U	0.47
DCB Decachlorobiphenyl	0.47	U .	0.47
Surrogate	%Rec		Acceptance Limits
Decachlorobiphenyl-13C12	52		44 - 104

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

PMA3M-0906-F

Lab Sample ID:

680-20272-13

Client Matrix:

Water

Date Sampled:

09/14/2006 1010

Date Received:

09/16/2006 0845

680 Polychlorinated Biphenyls by GCMS

Method:

680

Analysis Batch: 680-56007

Instrument ID:

GC/MS SemiVolatiles - F

Preparation:

680_P_Liquid

Prep Batch: 680-55368

Lab File ID:

N/A

Dilution:

1.0

Initial Weight/Volume:

980 mL 1 mL

Date Analyzed: Date Prepared: 09/26/2006 1418 09/20/2006 0851

Final Weight/Volume:

Analyte	Result (ug/L)	Qualifier	RL
Monochlorobiphenyl	0.10	U	0.10
Dichlorobiphenyl	0.10	U	0.10
Trichlorobiphenyl	0.10	ឋ	0.10
Tetrachlorobiphenyl	0.20	U	0.20
Pentachlorobiphenyl	0.20	U	0.20
-lexachlorobiphenyl	0.20	U	0.20
-leptachlorobiphenyl	0.31	U	0.31
Octachlorobiphenyl	0.31	U	0.31
Nonachlorobiphenyl	0.51	U	0.51
DCB Decachlorobiphenyl	0.51	U	0.51
Surrogate	%Rec		Acceptance Limits
Decachlorobiphenyl-13C12	63		44 - 104

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

PMA2M-0906

Lab Sample ID:

680-20272-14

Client Matrix:

Water

Date Sampled:

09/14/2006 1220

Date Received:

09/16/2006 0845

680 Polychlorinated Biphenyls by GCMS

Method:

Dilution:

Date Analyzed:

Date Prepared:

680

Preparation:

680_P_Liquid

09/26/2006 1452

09/20/2006 0851

Analysis Batch: 680-56007

Instrument ID:

GC/MS SemiVolatiles - F

Prep Batch: 680-55368

Lab File ID:

N/A 1060 mL

Initial Weight/Volume: Final Weight/Volume:

1 mL

Analyte	Result (ug/L)	Qualifier	RL
Monochlorobiphenyl	2.4		0.094
Dichlorobiphenyl	0.094	υ	0.094
Trichlorobiphenyl	0.094	บ	0.094
Tetrachlorobiphenyl	0.19	U	0.19
Pentachlorobiphenyl	0.19	U	0.19
-lexachlorobiphenyl	0.19	U	0.19
leptachlorobiphenyl	0.28	U	0.28
Octachlorobiphenyl	0.28	U	0.28
Nonachlorobiphenyl	0.47	U	0.47
DCB Decachlorobiphenyl	0.47	U	0.47
Surrogate	%Rec		Acceptance Limits
Decachlorobiphenyl-13C12	55		44 - 104

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

PMA2M-0906-F

Lab Sample ID:

680-20272-15

Client Matrix:

Water

Date Sampled:

09/14/2006 1220

Date Received:

09/16/2006 0845

680 Polychlorinated Biphenyls by GCMS

Method:

680

680_P_Liquid

Analysis Batch: 680-56007

Instrument ID:

GC/MS SemiVolatiles - F

Preparation:

4.0

Prep Batch: 680-55368

Lab File ID:

N/A

Dilution:

1.0

Prep batch, 660-5556

Initial Weight/Volume:

1040 mL

Date Analyzed: Date Prepared:

09/26/2006 1525 09/20/2006 0851 Final Weight/Volume:

1 mL

Analyte	Result (ug/L)	Qualifier	RL
Monochlorobiphenyl	0.096	U	0.096
Dichlorobiphenyl	0.096	U	0.096
Trichlorobiphenyl	0.096	U	0.096
Tetrachlorobiphenyl	0.19	U	0.19
Pentachlorobiphenyl	0.19	U	0.19
Hexachlorobiphenyl	0.19	U	0.19
Heptachlorobiphenyl	0.29	U	0.29
Octachlorobiphenyl	0.29	บ	0.29
Nonachlorobiphenyl	0.48	U	0.48
DCB Decachlorobiphenyl	0.48	U	0.48
Surrogate	%Rec		Acceptance Limits
Decachlorobiphenyl-13C12	59		44 - 104

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

PMA2S-0906-EB

Lab Sample ID:

680-20272-16

Client Matrix:

Water

Date Sampled:

09/14/2006 1400

Date Received:

09/16/2006 0845

680 Polychlorinated Biphenyls by GCMS

Method: Preparation:

Dilution:

Date Analyzed:

Date Prepared:

680

1.0

680_P_Liquid

09/26/2006 1559

09/20/2006 0851

Analysis Batch: 680-56007

Instrument ID:

GC/MS SemiVolatiles - F

uid Prep Batch: 680-55368

3

Lab File ID:

N/A

1060 mL

Initial Weight/Volume: Final Weight/Volume:

1 mL

Analyte	Result (ug/L)	Qualifier	RL
Monochlorobiphenyl	0.094	U	0.094
Dichlorobiphenyl	0.094	U	0.094
Trichlorobiphenyl	0.094	U	0.094
Tetrachlorobiphenyl	0.19	U	0.19
Pentachlorobiphenyl	0.19	U	0.19
Hexachlorobiphenyl	0.19	U	0.19
Heptachlorobiphenyl	0.28	U	0.28
Octachlorobiphenyl	0.28	U	0.28
Nonachlorobiphenyl	0.47	U	0.47
DCB Decachlorobiphenyl	0.47	U	0.47
Surrogate	%Rec		Acceptance Limits
Decachlorohiphenyl-13C12	73	Addressed to the second se	44 - 104

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

PMA2S-0906-EB-F

Lab Sample ID:

680-20272-17

Client Matrix:

Water

Date Sampled:

09/14/2006 1400

Date Received:

09/16/2006 0845

680 Polychlorinated Biphenyls by GCMS

Method:

680

680_P_Liquid

Analysis Batch: 680-56007

Instrument ID:

GC/MS SemiVolatiles - F

Preparation: Dilution:

1.0

Prep Batch: 680-55368

Lab File ID:

Initial Weight/Volume: Final Weight/Volume:

1040 mL

Date Analyzed: Date Prepared:

09/26/2006 1634

09/20/2006 0851

1 mL

Analyte	Result (ug/L)	Qualifier	RL
Monochlorobiphenyl	0.096	U	0.096
Dichlorobiphenyl	0.096	U	0.096
Trichlorobiphenyl	0.096	U	0.096
Tetrachlorobiphenyl	0.19	U	0.19
Pentachlorobiphenyl	0.19	U	0.19
Hexachlorobiphenyl	0.19	U	0.19
Heptachlorobiphenyl	0.29	U	0.29
Octachlorobiphenyl	0.29	บ	0.29
Nonachlorobiphenyl	0.48	U	0.48
DCB Decachlorobiphenyl	0.48	U	0.48
Surrogate	%Rec		Acceptance Limits
Decachlorobiphenyl-13C12	63		44 - 104

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

PMA2S-0906

Lab Sample ID:

680-20272-18

Client Matrix:

Water

Date Sampled:

09/14/2006 1525

Date Received:

09/16/2006 0845

680 Polychlorinated Biphenyls by GCMS

Method:

680

Analysis Batch: 680-56007

Instrument ID:

GC/MS SemiVolatiles - F

Preparation: Dilution:

680_P_Liquid

Prep Batch: 680-55368

Lab File ID:

N/A

1ep balcii. 000-55506

Initial Weight/Volume:

1040 mL 1 mL

Date Analyzed: Date Prepared: 1.0

09/26/2006 1708 09/20/2006 0851 Final Weight/Volume:

Analyte	Result (ug/L)	Qualifier	RL
Monochlorobiphenyl	0.096	U	0.096
Dichlorobiphenyl	0.096	U	0.096
Trichlorobiphenyl	0.096	U	0.096
Tetrachlorobiphenyl	0.19	U	0.19
Pentachlorobiphenyl	0.19	U	0.19
Hexachlorobiphenyl	0.19	U	0.19
Heptachlorobiphenyl	0.29	U	0.29
Octachlorobiphenyl	0.29	U	0.29
Nonachlorobiphenyl	0.48	U	0.48
DCB Decachlorobiphenyl	0.48	U	0.48
Surrogate	%Rec		Acceptance Limits
Decachlorobiphenyl-13C12	63		44 - 104

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

PMA2S-0906-F

Lab Sample ID:

680-20272-19

Client Matrix:

Water

Date Sampled:

09/14/2006 1525

Date Received:

09/16/2006 0845

680 Polychlorinated Biphenyls by GCMS

Method:

680

680_P_Liquid

Analysis Batch: 680-56007

Instrument ID:

GC/MS SemiVolatiles - F

Preparation: Dilution:

Prep Batch: 680-55368

Lab File ID: Initial Weight/Volume:

1020 mL

Date Analyzed:

1.0

09/26/2006 1742

Final Weight/Volume:

1 mL

Date Prepared:

09/20/2006 0851

Analyte	Result (ug/L)	Qualifier	RL
Monochlorobiphenyl	0.098	U	0.098
Dichlorobiphenyl	0.098	U	0.098
Trichlorobiphenyl	0.098	บ	0.098
Tetrachlorobiphenyl	0.20	U	0.20
Pentachlorobiphenyl	0.20	υ	0.20
Hexachlorobiphenyl	0.20	Ū	0.20
Heptachlorobiphenyl	0.29	IJ	0.29
Octachlorobiphenyl	0.29	U	0.29
Nonachlorobiphenyl	0.49	U	0.49
DCB Decachlorobiphenyl	0.49	U	0.49
Surrogate	%Rec		Acceptance Limits
Decachlorobiphenyl-13C12	64		44 - 104

		·

					,
	·				
				·	
·					
		,			

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

PMA3S-0906

Lab Sample ID:

680-20272-3

Client Matrix:

Water

Date Sampled:

09/13/2006 1520

Date Received:

09/15/2006 1030

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 680-56661

Instrument ID:

GC/MS SemiVolatiles - G

Preparation:

3520C

Prep Batch: 680-55366

Lab File ID:

g5675.d

Dilution:

1.0

p Batch: 000-35500

Initial Weight/Volume: Final Weight/Volume:

1060 mL⁻ 1 mL

Date Analyzed: 0
Date Prepared: 0

09/29/2006 2305 09/20/2006 0827

Analyte	Result (ug/L)	Qualifier	RL
Acenaphthene	9.4	U	9.4
Acenaphthylene	9.4	U	9.4
Acetophenone	9.4	U .	9.4
2-Acetylaminofluorene	9.4	U	9.4
alpha,alpha-Dimethyl phenethylamine	1900	υ	1900
4-Aminobiphenyl	9.4	U	9.4
Aniline	19	U	19
Anthracene	9.4	U	9.4
Aramite, Total	9.4	U	9.4
Benzo[a]anthracene	9.4	U*	9.4
Benzo[a]pyrene	9.4	U	9.4
enzo[b]fluoranthene	9.4	U	9.4
⇒enzo[g,h,i]perylene	9.4	Ü	9.4
Benzo[k]fluoranthene	9.4	U	9.4
Benzyl alcohol	9.4	U	9.4
1,1'-Biphenyl	9.4	ប	9.4
Bis(2-chloroethoxy)methane	9.4	. U	9.4
Bis(2-chloroethyl)ether	9.4	U	9.4
bis(chloroisopropyl) ether	9.4	U	9.4
Bis(2-ethylhexyl) phthalate	9.4	U	9.4
4-Bromophenyl phenyl ether	9.4	U	9.4
Butyl benzyl phthalate	9.4	U	9.4
4-Chloroaniline	19	U	19
4-Chloro-3-methylphenol	9.4	U	9.4
2-Chloronaphthalene	9.4	U	9.4
2-Chlorophenol	9.4	U	9.4
4-Chlorophenyl phenyl ether	9.4	U	9.4
Chrysene	9.4	U	9.4
Diallate	9.4	U	9.4
Dibenz(a,h)anthracene	9.4	U	9.4
Dibenzofuran	9.4	U	9.4
3,3'-Dichlorobenzidine	19	U	19
2,4-Dichlorophenol	9.4	บ	9.4
2,6-Dichlorophenol	9.4	U	9.4
Diethyl phthalate	9.4	U	9.4
Dimethoate	9.4	U	9.4
7,12-Dimethylbenz(a)anthracene	9.4	U	9.4
3,3'-Dimethylbenzidine	19	U	19
2,4-Dimethylphenol	9.4	U	9.4
Pimethyl phthalate	9.4	U	9.4
n-butyl phthalate	9.4	U	9.4
.,3-Dinitrobenzene	9.4	U	9.4
4,6-Dinitro-2-methylphenol	47	U	47

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

PMA3S-0906

Lab Sample ID:

680-20272-3

Client Matrix:

Water

Date Sampled:

09/13/2006 1520

Date Received:

09/15/2006 1030

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C 3520C Analysis Batch: 680-56661

Instrument ID:

GC/MS SemiVolatiles - G

Preparation:

Lab File ID:

g5675.d

RL 47

Dilution:

1.0

Prep Batch: 680-55366

Initial Weight/Volume:

1060 mL

Date Analyzed: Date Prepared:

09/29/2006 2305 09/20/2006 0827

Final Weight/Volume:

1 mL

Injection Volume:

Analyte	Result (ug/L)	Qualifier	
2,4-Dinitrophenol	47	U	
2,6-Dinitrotoluene	9.4	U	
2,4-Dinitrotoluene	9.4	U	
Di-n-octyl phthalate	9.4	U .	
Dinoseb	9.4	U	
1,4-Dioxane	9.4	U	
Disulfoton	9.4	U	
Ethyl methanesulfonate	9.4	บ	
Famphur	9.4	U	
Fluoranthene	9.4	U	
Fluorene	9.4	IJ	
lexachlorobenzene	9.4	U-	
Hexachlorobutadiene	9.4	U	
Hexachlorocyclopentadiene	9.4	U	
Hexachloroethane	9.4	U	
Hexachlorophene	4700	U	
Hexachloropropene	9.4	U	
Indeno[1,2,3-cd]pyrene	9.4	U	
Isophorone	9.4	U	
Isosafrole	9.4	U	
Methapyrilene	1900	U	
3-Methylcholanthrene	9.4	IJ	
Methyl methanesulfonate	9.4	U	
2-Methylnaphthalene	9.4	U	
Methyl parathion	9.4	U	•
2-Methylphenol	9.4	U .	
3 & 4 Methylphenol	9.4	U	
Naphthalene	9.4	U	
1,4-Naphthoquinone	9.4	U	
1-Naphthylamine	9.4	U	
2-Naphthylamine	9.4	U	
3-Nitroaniline	47	U	,
2-Nitroaniline	47	U	
4-Nitroaniline	47	U	
Nitrobenzene	9.4	U	
4-Nitrophenol	47	Ü	
2-Nitrophenol	9.4	Ü	
4-Nitroquinoline-1-oxide	19	ับ	
N-Nitro-o-toluidine	9.4	Ü	!
'-Nitrosodiethylamine	9.4	Ü	9
-Nitrosodimethylamine	9.4	Ŭ [.]	9
N-Nitrosodi-n-butylamine	9.4	ŭ	

9.4	
9.4	
9.4	
9.4	
9.4	
9.4	
9.4	
9.4	•
9.4	
9.4	
9.4	
9.4	
9.4	
9.4	
4700	
9.4	
9.4	
9.4	
9.4	
1900	
9.4	
9.4	
9.4	
9.4	
9.4	
9.4	
9.4	
9.4	
9.4	
9.4	
47	
47	
47	
9.4	
47	
9.4	
19	
9.4	
9.4	
9.4	
9.4	
9.4	

N-Nitrosodi-n-propylamine

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

PMA3S-0906

Lab Sample ID:

680-20272-3

Client Matrix:

Water

Date Sampled:

09/13/2006 1520

Date Received:

09/15/2006 1030

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 680-56661

Instrument ID:

GC/MS SemiVolatiles - G

Preparation:

3520C

Prep Batch: 680-55366

Lab File ID:

g5675.d

Dilution: Date Analyzed: 1.0

Initial Weight/Volume: Final Weight/Volume: 1060 mL 1 mL

Date Prepared:

09/29/2006 2305 09/20/2006 0827

Injection Volume:

Analyte	Result (ug/L)	Qualifier	RL
N-Nitrosodiphenylamine	9.4	U	9.4
N-Nitrosomethylethylamine	9.4	บ	9.4
N-Nitrosomorpholine	9.4	U	9.4
N-Nitrosopiperidine	9.4	U	9.4
N-Nitrosopyrrolidine	9.4	U	9.4
o,o',o"-Triethylphosphorothioate	9.4	บ	9.4
Parathion	9.4	U	9.4
p-Dimethylamino azobenzene	9.4	U	9.4
Pentachlorobenzene	9.4	U	9.4
Pentachloronitrobenzene	9.4	U	9.4
Pentachlorophenol	47	U	47
henacetin	9.4	U	9.4
Phenanthrene	9.4	· U	9.4
Phenol	9.4	U	9.4
Phorate	9.4	υ	9.4
2-Picoline	9.4	บ	9.4
p-Phenylene diamine	1900	U	1900
Pronamide	9.4	U	9.4
Pyrene	9.4	U	9.4
Pyridine	47	U	47
Safrole, Total	9.4	U	9.4
Sulfotepp	9.4	U	9.4
1,2,4,5-Tetrachlorobenzene	9.4	U	9.4
2,3,4,6-Tetrachlorophenol	9.4	·U	9.4
Thionazin	9.4	U	9.4
2-Toluidine	9.4	U	9.4
1,2,4-Trichlorobenzene	9.4	U	9.4
2,4,5-Trichlorophenol	9.4	U	9.4
2,4,6-Trichlorophenol	9.4	U -	9.4
1,3,5-Trinitrobenzene	9.4	U	9.4
1-Chloro-3-nitrobenzene	9.4	U	9.4
1-Chloro-4-nitrobenzene	9.4	บ	9.4
1-Chloro-2-nitrobenzene	9.4	U	9.4
2-Nitrobiphenyl	9.4	U	9.4
2,4-Dichloronitrobenzene	9.4	U	9.4
3-Nitrobiphenyl	9.4	บ	9.4
3,4-Dichloronitrobenzene	9.4	ប	9.4
4-Nitrobiphenyl	9.4	U	9.4
Surrogate	%Rec		Acceptance Limits
Fluorobiphenyl	76		59 - 103
Fluorophenol	71		56 - 100
Nitrobenzene-d5	80		60 - 102
Phenol-d5	78		55 - 104

Page 49 of 114

STL Savannah

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

PMA3S-0906

Lab Sample ID:

680-20272-3

09/29/2006 2305

09/20/2006 0827

Client Matrix:

Water

Date Sampled:

09/13/2006 1520

Date Received:

09/15/2006 1030

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 680-56661

Instrument ID:

GC/MS SemiVolatiles - G

Preparation:

3520C

Prep Batch: 680-55366

Lab File ID:

q5675.d

Dilution: Date Analyzed: Date Prepared: 1.0

Initial Weight/Volume:

1060 mL

Final Weight/Volume:

1 mL

Injection Volume:

Surrogate

%Rec

Acceptance Limits 10 - 154

Terphenyl-d14 2,4,6-Tribromophenol

102 85

55 - 126

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

PMA3S-0906-DUP

Lab Sample ID:

680-20272-5

Client Matrix:

Water

Date Sampled:

09/13/2006 1520

Date Received:

09/15/2006 1030

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 680-56661

Instrument ID:

GC/MS SemiVolatiles - G

Preparation:

3520C

Prep Batch: 680-55366

Lab File ID:

g5676.d

Dilution:

1.0

Initial Weight/Volume:

1040 mL

48

09/29/2006 2335 Date Analyzed:

Final Weight/Volume:

1 mL

Date Prepared:

09/20/2006 0827

Injection Volume:

Analyte	Result (ug/L)	Qualifier	RL
Acenaphthene	9.6	U	9.6
Acenaphthylene	9.6	IJ	9.6
Acetophenone	9.6	U	9.6
2-Acetylaminofluorene	9.6	U	9.6
alpha,alpha-Dimethyl phenethylamine	1900	บ	1900
4-Aminobiphenyl	9.6	U · · ·	9.6
Aniline	19	บ	19
Anthracene	9.6	ប	9.6
Aramite, Total	9.6	U	9.6
Benzo[a]anthracene	9.6	U *	9.6
Renzo[a]pyrene	9.6	U	9.6
enzo[b]fluoranthene	9.6	ប	9.6
Benzo[g,h,i]perylene	9.6	U	9.6
Benzo[k]fluoranthene	9.6	U .	9.6
Benzyl alcohol	9.6	U	9.6
1,1'-Biphenyl	9.6	U	9.6
Bis(2-chloroethoxy)methane	9.6	U	9.6
Bis(2-chloroethyl)ether	9.6	U	9.6
bis(chloroisopropyl) ether	9.6	U	9.6
Bis(2-ethylhexyl) phthalate	9.6	U	9.6
4-Bromophenyl phenyl ether	9.6	U	9.6
Butyl benzyl phthalate	9.6	U	9.6
4-Chloroaniline	19	U	19
4-Chloro-3-methylphenol	9.6	U	9.6
2-Chloronaphthalene	9.6	U	9.6
2-Chlorophenol	9.6	U	9.6
4-Chlorophenyl phenyl ether	9.6	U	9.6
Chrysene	9.6	Ü	9.6
Diallate	9.6	Ū	9.6
Dibenz(a,h)anthracene	9.6	Ü	9.6
Dibenzofuran	9.6	Ü	9.6
3,3'-Dichlorobenzidine	19	Ü	19
2,4-Dichlorophenol	9.6	บ	9.6
2,6-Dichlorophenol	9.6	Ŭ	9.6
Diethyl phthalate	9.6	Ū	9.6
Dimethoate	9.6	Ü	9.6
7,12-Dimethylbenz(a)anthracene	9.6	ΰ	9.6
3,3'-Dimethylbenzidine	19	Ŭ	19
2,4-Dimethylphenol	9.6	Ü	9.6
imethyl phthalate	9.6	Ü	9.6
n-butyl phthalate	9.6	ΰ	9.6
1,3-Dinitrobenzene	9.6	บ	9.6
1,5-121111111111111111111111111111111111	3. 0	J	3. 0

U

48

4,6-Dinitro-2-methylphenol

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

PMA3S-0906-DUP

Lab Sample ID:

680-20272-5

Client Matrix:

Water

Date Sampled:

09/13/2006 1520

Date Received:

09/15/2006 1030

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

3520C

Analysis Batch: 680-56661

Instrument ID:

GC/MS SemiVolatiles - G

Preparation:

Prep Batch: 680-55366

Lab File ID:

g5676.d

Dilution: Date Analyzed: 1.0

Initial Weight/Volume: Final Weight/Volume:

1040 mL 1 mL

Date Prepared:

09/29/2006 2335 09/20/2006 0827

Injection Volume:

Analyte	Result (ug/L)	Qualifier	RL
2,4-Dinitrophenol	48	U	48
2,6-Dinitrotoluene	9.6	Ü	9.6
2,4-Dinitrotoluene	9.6	U	9.6
Di-n-octyl phthalate	9.6	Ū	9.6
Dinoseb	9.6	Ü	9.6
1,4-Dioxane	9.6	Ü	9.6
Disulfoton	9.6	U	9.6
Ethyl methanesulfonate	9.6	U	9.6
Famphur	9.6	บ	9.6
Fluoranthene	9.6	U	9.6
Fluorene	9.6	U	9.6
lexachlorobenzene	9.6	Ū	9.6
Aexachlorobutadiene	9.6	U	9.6
Hexachlorocyclopentadiene	9.6	U	9.6
Hexachloroethane	9.6	U	9.6
Hexachlorophene	4800	U ·	4800
Hexachloropropene	9.6	U	9.6
Indeno[1,2,3-cd]pyrene	9.6	U.	9.6
Isophorone	9.6	υ	9.6
Isosafrole	9.6	U	9.6
Methapyrilene	1900	U	1900
3-Methylcholanthrene	9.6	. n	9.6
Methyl methanesulfonate	9.6	U	9.6
2-Methylnaphthalene	9.6	υ	9.6
Methyl parathion	9.6	U	9.6
2-Methylphenol	9.6	U	9.6
3 & 4 Methylphenol	9.6	U	9.6
Naphthalene	9.6	ับ	9.6
1,4-Naphthoquinone	9.6	U	9.6
1-Naphthylamine	9.6	U	9.6
2-Naphthylamine	9.6	ប	9.6
3-Nitroaniline	48	U	48
2-Nitroaniline	48	U	48
4-Nitroaniline	48	U	48
Nitrobenzene	9.6	U	9.6
4-Nitrophenol	48	U .	` 48
2-Nitrophenol	9.6	บ	9.6
4-Nitroquinoline-1-oxide	19	Ü	19
N-Nitro-o-toluidine	9.6	U·	9.6
N-Nitrosodiethylamine	9.6	U	9.6
Nitrosodimethylamine	9.6	U	9.6
Nitrosodi-n-butylamine	9.6	U	9.6
N-Nitrosodi-n-propylamine	9.6	U	9.6

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

PMA3S-0906-DUP

Lab Sample ID:

680-20272-5

Client Matrix:

Water

Date Sampled:

09/13/2006 1520

Date Received: 09/15/2006 1030

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 680-56661

Instrument ID:

GC/MS SemiVolatiles - G

Preparation:

3520C

Prep Batch: 680-55366

Lab File ID:

g5676.d

Dilution:

Initial Weight/Volume:

1040 mL

Date Analyzed:

1.0

Final Weight/Volume:

1 mL

Date Prepared:

STL Savannah

09/29/2006 2335 09/20/2006 0827

Injection Volume:

Analyte	Result (ug/L)	Qualifier	RL.
N-Nitrosodiphenylamine	9.6	U	9.6
N-Nitrosomethylethylamine	9.6	U	9.6
N-Nitrosomorpholine	9.6	U	9.6
N-Nitrosopiperidine	9.6	U	9.6
N-Nitrosopyrrolidine	9.6	· U	9.6
o,o',o"-Triethylphosphorothioate	9.6	U	9.6
Parathion	9.6	U	9.6
p-Dimethylamino azobenzene	9.6	U	9.6
Pentachlorobenzene	9.6	U	9.6
Pentachloronitrobenzene	9.6	U	9.6
Pentachlorophenol	48	U	48
'henacetin	9.6	U	9.6
∂henanthrene	9.6	U	9.6
Phenol	9.6	U	9.6
Phorate	9.6	U	9.6
2-Picoline	9.6	U	9.6
p-Phenylene diamine	1900	U	1900
Pronamide	9.6	U	9.6
Pyrene	9.6	U-	9.6
Pyridine	48	U	48
Safrole, Total	9.6	U	9.6
Sulfotepp	9.6	U	9.6
1,2,4,5-Tetrachlorobenzene	9.6	U	9.6
2,3,4,6-Tetrachlorophenol	9.6	U	9.6
Thionazin	9.6	U	9.6
2-Toluidine	9.6	U	9.6
1,2,4-Trichlorobenzene	9.6	U	9.6
2,4,5-Trichlorophenol	9.6	Ŭ	9.6
2,4,6-Trichlorophenol	9.6	U	9.6
1,3,5-Trinitrobenzene	9.6	บ	9.6
1-Chloro-3-nitrobenzene	9.6	U	9.6
1-Chloro-4-nitrobenzene	9.6	U	9.6
1-Chloro-2-nitrobenzene	9.6	บ	9.6
2-Nitrobiphenyl	9.6	U	9.6
2,4-Dichloronitrobenzene	9.6	U	9.6
3-Nitrobiphenyl	9.6	U	9.6
3,4-Dichloronitrobenzene	9.6	บ	9.6
4-Nitrobiphenyl	9.6	U	9.6
Surrogate	%Rec		Acceptance Limits
Fluorobiphenyl	84		59 - 103
-Fluorophenol	79		56 - 100
Nitrobenzene-d5	87		60 - 102
Phenol-d5	86		55 - 104

Page 53 of 114

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

PMA3S-0906-DUP

Lab Sample ID:

680-20272-5

Client Matrix:

Water

Date Sampled:

09/13/2006 1520

Date Received:

09/15/2006 1030

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 680-56661

Instrument ID:

GC/MS SemiVolatiles - G

Preparation:

3520C

Lab File ID:

g5676.d

Dilution:

1.0

Prep Batch: 680-55366

Date Analyzed:

Initial Weight/Volume: Final Weight/Volume:

1040 mL 1 mL

09/29/2006 2335 Date Prepared: 09/20/2006 0827

Injection Volume:

Surrogate %Rec Acceptance Limits Terphenyl-d14 104 10 - 154 93 2,4,6-Tribromophenol 55 - 126

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

PMA1M-0906

Lab Sample ID:

680-20272-7

Client Matrix:

Water

Date Sampled:

09/15/2006 0850

Date Received:

09/16/2006 0845

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 680-56661

Instrument ID:

GC/MS SemiVolatiles - G

Preparation:

3520C

Prep Batch: 680-55366

Lab File ID:

g5677.d

Dilution:

5.0

Initial Weight/Volume:

1060 mL

Date Analyzed: Date Prepared: 09/30/2006 0004 09/20/2006 0827 Final Weight/Volume:

1 mL

Analyte	Result (ug/L)	Qualifier	RL .
Acenaphthene	47	U	47
Acenaphthylene	47	U	47
Acetophenone	47	บ	47
2-Acetylaminofluorene	47	U	47
alpha,alpha-Dimethyl phenethylamine	9400	U	9400
4-Aminobiphenyl	47	บ	47
Aniline	94	U	94
Anthracene	47	U .	47
Aramite, Total	47	U	47
Benzo[a]anthracene	47	υ·	47
Benzo[a]pyrene	47	U	47
`enzo[b]fluoranthene	47	U	47
⇒enzo[g,h,i]perylene	47	U	47
Benzo[k]fluoranthene	47	υ	47
Benzyl alcohol	47	U	47
1,1'-Biphenyl	47	U	47
Bis(2-chloroethoxy)methane	. 47	U	47
Bis(2-chloroethyl)ether	47	Ū	47
bis(chloroisopropyl) ether	47	Ü	47
Bis(2-ethylhexyl) phthalate	47	Ü	47
4-Bromophenyl phenyl ether	47	Ū	47
Butyl benzyl phthalate	47	U	47
4-Chloroaniline	94	Ü	94
4-Chloro-3-methylphenol	47	- บ	47
2-Chloronaphthalene	47	Ū	47
2-Chlorophenol	47	Ü	47
4-Chlorophenyl phenyl ether	47	Ü	47
Chrysene	47	Ū	47
Diallate	47	Ü	47
Dibenz(a,h)anthracene	47	Ü	47
Dibenzofuran	47	Ü	47
3,3'-Dichlorobenzidine	94	Ŭ.	94
2,4-Dichlorophenol	47	Ü	47
2,6-Dichlorophenol	47	Ü	47
Diethyl phthalate	47	Ü	47
Dimethoate	47	Ŭ	47
7,12-Dimethylbenz(a)anthracene	47	Ŭ	47
3,3'-Dimethylbenzidine	.94	ŭ	94
2,4-Dimethylphenol	47	Ŭ	47
Dimethyl phthalate	47	ŭ	47
n-butyl phthalate	47	Ŭ	47
,3-Dinitrobenzene	47	Ŭ	47
1,6-Dinitro-2-methylphenol	240	ŭ	240

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

PMA1M-0906

Lab Sample ID:

680-20272-7

Client Matrix:

Water

Date Sampled:

09/15/2006 0850

Date Received:

09/16/2006 0845

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C 3520C

Analysis Batch: 680-56661

Instrument ID:

GC/MS SemiVolatiles - G

Preparation:

Lab File ID:

a5677.d

Dilution:

5.0

Prep Batch: 680-55366

Initial Weight/Volume:

1060 mL

Date Analyzed:

09/30/2006 0004

Final Weight/Volume:

1 mL

Date Prepared:

09/20/2006 0827

Injection Volume:

Result (ug/L) Qualifier Analyte 2.4-Dinitrophenol 240 U 2.6-Dinitrotoluene 47 Ú 2.4-Dinitrotoluene 47 U 47 U Di-n-octyl phthalate U Dinoseb 47 1,4-Dioxane 47 U Disulfoton 47 U Ethyl methanesulfonate 47 U Famphur 47 U

Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene

Hexachloroethane Hexachlorophene Hexachloropropene indeno[1,2,3-cd]pyrene

Hexachlorocyclopentadiene

Isophorone Isosafrole Methapyrilene 3-Methylcholanthrene Methyl methanesulfonate

Methyl parathion 2-Methylphenol 3 & 4 Methylphenol Naphthalene

2-Methylnaphthalene

1.4-Naphthoguinone 1-Naphthylamine 2-Naphthylamine 3-Nitroaniline 2-Nitroaniline 4-Nitroaniline

Nitrobenzene

4-Nitrophenol 2-Nitrophenol 4-Nitroquinoline-1-oxide N-Nitro-o-toluidine

Y-Nitrosodiethylamine

1-Nitrosodimethylamine N-Nitrosodi-n-butylamine N-Nitrosodi-n-propylamine 47 U 47 U 47 U 47 U 47 U 47 U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

24000

94

47

47 47 47

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

PMA1M-0906

Lab Sample ID:

680-20272-7

Client Matrix:

Water

Date Sampled:

09/15/2006 0850

Date Received:

09/16/2006 0845

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method: Preparation:

STL Savannah

8270C 3520C

Analysis Batch: 680-56661 Prep Batch: 680-55366

Instrument ID:

GC/MS SemiVolatiles - G g5677.d

Dilution:

5.0

Lab File ID: Initial Weight/Volume:

1060 mL

Date Analyzed: Date Prepared:

09/30/2006 0004 09/20/2006 0827 Final Weight/Volume:

1 mL

Injection Volume:

Analyte	Result (ug/L)	Qualifier	RL
N-Nitrosodiphenylamine	47	U	47
N-Nitrosomethylethylamine	47	U	47
N-Nitrosomorpholine	47	U	47
N-Nitrosopiperidine	47	U	47
N-Nitrosopyrrolidine	47	U	47
o,o',o"-Triethylphosphorothioate	47	U	47
Parathion	47	U	47
p-Dimethylamino azobenzene	47	U	47
Pentachlorobenzene	47	U	47
Pentachloronitrobenzene	47	U	47
Pentachlorophenol	240	Ū	240
henacetin	47	Ū	47
Phenanthrene	47	Ū	47
Phenoi	. 47	Ū	 47
Phorate	47	บ	47
2-Picoline	47	Ū	47
p-Phenylene diamine	9400	Ü	9400
Pronamide	47	ΰ	47
Pyrene	47	Ŭ.	47
Pyridine	240	Ü	240
Safrole, Total	47	ŭ	47
Sulfotepp	47	Ŭ	47
1,2,4,5-Tetrachlorobenzene	47	Ü	47
2,3,4,6-Tetrachlorophenol	47	Ŭ	47
Thionazin	47	Ŭ	47
2-Toluidine	 47	Ŭ	47
1,2,4-Trichlorobenzene	 47	Ŭ	47
2,4,5-Trichlorophenol	47	Ŭ	47
2,4,6-Trichlorophenol	47	Ŭ	47
1,3,5-Trinitrobenzene	47	Ŭ	47
1-Chloro-3-nitrobenzene	47	Ŭ	47
1-Chloro-4-nitrobenzene	47	Ü	47
1-Chloro-2-nitrobenzene	47	Ü	47
2-Nitrobiphenyl	47	Ŭ	47
2,4-Dichloronitrobenzene	47	Ü	47 47
3-Nitrobiphenyl	47	บ	
3,4-Dichloronitrobenzene	47	Ü	47
4-Nitrobiphenyl	47	Ü	47 47
Surrogate	%Rec		Acceptance Limits
Fluorobiphenyl	0	D	59 - 103
∠-Fluorophenol	59	U	
2-i ndorophenoi Nitrobenzene-d5	0 0	D	56 - 100 60 - 103
Phenol-d5		ט	60 - 102
- Nenor-up	63		55 - 104

Page 57 of 114

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

PMA1M-0906

Lab Sample ID:

680-20272-7

Client Matrix:

Water

Date Sampled:

09/15/2006 0850

Date Received:

09/16/2006 0845

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 680-56661

Instrument ID:

GC/MS SemiVolatiles - G

Preparation:

3520C

Lab File ID:

g5677.d

Acceptance Limits

Dilution:

5.0

Prep Batch: 680-55366

Initial Weight/Volume:

1060 mL

Date Analyzed: 09/30/2006 0004 Date Prepared: 09/20/2006 0827

Final Weight/Volume:

1 mL

Injection Volume:

Surrogate

%Rec

D

10 - 154

Terphenyl-d14 2,4,6-Tribromophenol 0 57

55 - 126

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

PMA1S-0906

Lab Sample ID:

680-20272-10

Client Matrix:

Water

Date Sampled: Date Received: 09/15/2006 1115 09/16/2006 0845

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 680-56665

instrument iD:

GC/MS SemiVolatiles - G

Preparation:

3520C

Prep Batch: 680-55366

Lab File ID:

g6799.d

Dilution:

1.0

Initial Weight/Volume:

1060 mL

Date Analyzed:

10/05/2006 1045

Final Weight/Volume:

1 mL

Date Prepared:

09/20/2006 0827

Analyte	Result (ug/L)	Qualifier	RL
Acenaphthene	9.4	U	9.4
Acenaphthylene	9.4	U	9.4
Acetophenone	9.4	U	9.4
2-Acetylaminofluorene	9.4	U	9.4
alpha,alpha-Dimethyl phenethylamine	1900	U	1900
4-Aminobiphenyl	9.4	U	9.4
Aniline	19	U	19
Anthracene	9.4	U	9.4
Aramite, Total	9.4	U	9.4
Benzo[a]anthracene	9.4	U*	9.4
Benzo[a]pyrene	9.4	U	9.4
enzo[b]fluoranthene	9.4	U	9.4
enzo[g,h,i]perylene	9.4	U	9.4
Benzo[k]fluoranthene	9.4	U	9.4
Benzyl alcohol	9.4	U	9.4
1,1'-Biphenyl	9.4	Ü	9.4
Bis(2-chloroethoxy)methane	9.4	Ü	9.4
Bis(2-chloroethyl)ether	9.4	Ü	9.4
bis(chloroisopropyl) ether	9.4	Ü	9.4
Bis(2-ethylhexyl) phthalate	9.4	Ü	9.4
4-Bromophenyl phenyl ether	9.4	Ū	9.4
Butyl benzyl phthalate	9.4	Ū	9.4
4-Chloroaniline	19	Ü	19
1-Chloro-3-methylphenol	9.4	Ū	9.4
2-Chloronaphthalene	9.4	Ū	9.4
2-Chlorophenol	9.4	Ü	9.4
I-Chlorophenyl phenyl ether	9.4	Ū	9.4
Chrysene	9.4	Ü .	9.4
Diallate	9.4	Ū	9.4
Dibenz(a,h)anthracene	9.4	Ü	9.4
Dibenzofuran	9.4	Ü	9.4
3,3'-Dichlorobenzidine	19	Ü	19
2,4-Dichlorophenol	9.4	Ü	9.4
2,6-Dichlorophenol	9.4	Ü	9.4
Diethyl phthalate	9.4	Ŭ	9.4
Dimethoate	9.4	Ü	9.4
,12-Dimethylbenz(a)anthracene	9.4	Ŭ	9.4
,3'-Dimethylbenzidine	19	Ŭ	9.4 19
,4-Dimethylphenol	9.4	Ŭ	9.4
Pimethyl phthalate	9.4	Ü	9.4 9.4
n-butyl phthalate	9.4	บ	9.4 9.4
3-Dinitrobenzene	9.4	U	9.4 9.4
,6-Dinitro-2-methylphenol	9. 4 47	บ	9.4 47

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

PMA1S-0906

Lab Sample ID:

680-20272-10

Client Matrix:

Water

Date Sampled:

09/15/2006 1115

Date Received:

09/16/2006 0845

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C 3520C Analysis Batch: 680-56665

Instrument ID:

GC/MS SemiVolatiles - G

Preparation:

Allarysis balcii. 000-50

Lab File ID:

g6799.d

Dilution:

Analyte

1.0

Prep Batch: 680-55366

Result (ua/L)

Initial Weight/Volume:

1060 mL

RL

Date Analyzed: Date Prepared: 10/05/2006 1045

Final Weight/Volume:

1 mL

d:

09/20/2006 0827

Injection Volume:

Qualifier

Analyte	Result (ug/L)	Quamer	RL.
2,4-Dinitrophenol	47	U	47
2,6-Dinitrotoluene	9.4	U	9.4
2,4-Dinitrotoluene	9.4	U	9.4
Di-n-octyl phthalate	9.4	U	9.4
Dinoseb	9.4	U	9.4
1,4-Dioxane	9.4	U	9.4
Disulfoton	9.4	U	9.4
Ethyl methanesulfonate	9.4	U	9.4
Famphur	9.4	บ	9.4
Fluoranthene	9.4	ប	9.4
Fluorene	9.4	บ	9.4
Hexachlorobenzene	9.4	U	9.4
Hexachlorobutadiene	9.4	U	9.4
Hexachlorocyclopentadiene	9.4	U	9.4
Hexachloroethane	9.4	U	9.4
Hexachlorophene	4700	U	4700
Hexachloropropene	9.4	U	9.4
Indeno[1,2,3-cd]pyrene	9.4	U	9.4
Isophorone	9.4	υ	9.4
Isosafrole	9.4	U	9.4
Methapyrilene	1900	U	1900
3-Methylcholanthrene	9.4	บ	9.4
Methyl methanesulfonate	9.4	U	9.4
2-Methylnaphthalene	9.4	U	9.4
Methyl parathion	9.4	U	9.4
2-Methylphenol	9.4	ប	9.4
3 & 4 Methylphenol	9.4	U	9.4
Naphthalene	9.4	U	9.4
1,4-Naphthoquinone	9.4	U	9.4
1-Naphthylamine	9.4	U	9.4
2-Naphthylamine	9.4	U	9.4
3-Nitroaniline	47	U	47
2-Nitroaniline	47	บ	47
4-Nitroaniline	47	U	47
Nitrobenzene	9.4	U	9.4
4-Nitrophenol	47	U	47
2-Nitrophenol	9.4	U	9.4
4-Nitroquinoline-1-oxide	19	U	19
N-Nitro-o-toluidine	9.4	U	9.4
1-Nitrosodiethylamine	9.4	U	- 9.4
-Nitrosodimethylamine	9.4	U	9.4
N-Nitrosodi-n-butylamine	9.4	U	9.4
N-Nitrosodi-n-propylamine	9.4	บ	9.4
• ••			

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

PMA1S-0906

Lab Sample ID:

680-20272-10

Client Matrix:

Water

Date Sampled:

09/15/2006 1115

Date Received:

09/16/2006 0845

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

70C

10/05/2006 1045

09/20/2006 0827

Analysis Batch: 680-56665

Instrument ID:

GC/MS SemiVolatiles - G

Preparation:

3520C

Prep Batch: 680-55366

Lab File ID:

g6799.d

Dilution:
Date Analyzed:
Date Prepared:

1.0

.

Initial Weight/Volume:

1060 mL 1 mL

Final Weight/Volume:

....

Injection Volume:

Analyte	Result (ug/L)	Qualifier	RL	
N-Nitrosodiphenylamine	9.4	U	9.4	
N-Nitrosomethylethylamine	9.4	U	9.4	
N-Nitrosomorpholine	9.4	U	9.4	
N-Nitrosopiperidine	9.4	U	9.4	
N-Nitrosopyrrolidine	9.4	บ	9.4	
o,o',o"-Triethylphosphorothioate	9.4	U	9.4	
Parathion	9.4	U	9.4	
p-Dimethylamino azobenzene	9.4	U	9.4	
Pentachlorobenzene	9.4	ប	9.4	
Pentachloronitrobenzene	9.4	U	9.4	
Pentachlorophenol	47	U	47	
henacetin	9.4	U	9.4	
henanthrene	9.4	U	9.4	
Phenol	9.4	U	9.4	
Phorate	9.4	U	9.4	
2-Picoline	9.4	U	9.4	
p-Phenylene diamine	1900	υ	1900	
Pronamide	9.4	U	9.4	
Pyrene	9.4	U	9.4	
Pyridine	47	U	47	
Safrole, Total	9.4	U	9.4	
Sulfotepp	9.4	U	9.4	
1,2,4,5-Tetrachlorobenzene	9.4	U	9.4	
2,3,4,6-Tetrachlorophenol	9.4	Ü	9.4	
Thionazin	9.4	U	9.4	
2-Toluidine	9.4	U	9.4	
1,2,4-Trichlorobenzene	9.4	U	9.4	
2,4,5-Trichlorophenol	9.4	U	9.4	
2,4,6-Trichlorophenol	9.4	U	9.4	
1,3,5-Trinitrobenzene	9.4	U	9.4	
1-Chloro-3-nitrobenzene	9.4	Ü	9.4	
1-Chloro-4-nitrobenzene	9.4	Ū	9.4	
1-Chloro-2-nitrobenzene	9.4	U	9.4	
2-Nitrobiphenyl	9.4	U	9.4	
2,4-Dichloronitrobenzene	9.4	Ū	9.4	
3-Nitrobiphenyl	9.4	Ü	9.4	
3,4-Dichloronitrobenzene	9.4	บ	9.4	
4-Nitrobiphenyl	9.4	Ū	9.4	
Surrogate	%Rec	Acceptance Limits		
Fluorobiphenyl	87	59 - 103		
Fluorophenol	-86	56 - 100		
Nitrobenzene-d5	95	60 - 102		
Phenol-d5	91	55 - 104		

Page 61 of 114

STL Savannah

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

PMA1S-0906

Lab Sample ID:

680-20272-10

Client Matrix:

Water

Date Sampled:

09/15/2006 1115

Date Received:

09/16/2006 0845

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

10/05/2006 1045

09/20/2006 0827

Analysis Batch: 680-56665

Instrument ID:

GC/MS SemiVolatiles - G

Preparation: Dilution:

Date Analyzed:

Date Prepared:

3520C 1.0

Prep Batch: 680-55366

Lab File ID:

g6799.d

Initial Weight/Volume:

Final Weight/Volume:

1060 mL 1 mL

Injection Volume:

%Rec Surrogate Acceptance Limits 10 - 154 Terphenyl-d14 105 2,4,6-Tribromophenol 91 55 - 126

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

PMA3M-0906

Lab Sample ID:

680-20272-12

Client Matrix:

Water

Date Sampled:

09/14/2006 1010

Date Received:

09/16/2006 0845

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 680-56665

Instrument ID:

GC/MS SemiVolatiles - G

Preparation:

3520C

Prep Batch: 680-55366

Lab File ID:

g6800.d

Dilution:

5.0

Initial Weight/Volume:

1060 mL

Date Analyzed: Date Prepared:

10/05/2006 1113 09/20/2006 0827

Final Weight/Volume:

1 mL

Analyte	Result (ug/L)	Qualifier	RL .
Acenaphthene	47	U	47
Acenaphthylene	47	U	47
Acetophenone	47	U .	47
2-Acetylaminofluorene	47	U	47
alpha,alpha-Dimethyl phenethylamine	9400	U	9400
4-Aminobiphenyl	47	U	47
Aniline	94	U	94
Anthracene	47	บ	47
Aramite, Total	47	U	47
Benzo[a]anthracene	47	U.*	47
Benzo[a]pyrene	47	U	47
enzo[b]fluoranthene	47	U	47
∃enzo[g,h,i]perylene	47	U	47
Benzo[k]fluoranthene	47	U	47
Benzyl alcohol	47	ប	47
1,1'-Biphenyl	47	U	47
Bis(2-chloroethoxy)methane	47	U	47
Bis(2-chloroethyl)ether	47	U	47
bis(chloroisopropyl) ether	47	U	47
Bis(2-ethylhexyl) phthalate	47	U	47
4-Bromophenyl phenyl ether	47	U	47
Butyl benzyl phthalate	47	U	47
4-Chloroaniline	94	U	94
4-Chloro-3-methylphenol	47	U	47
2-Chloronaphthalene	47	U	47
2-Chlorophenoi	47	υ	47
4-Chlorophenyl phenyl ether	47	บ	47
Chrysene	47	U	47
Diallate	47	บ	47
Dibenz(a,h)anthracene	47	U	47
Dibenzofuran	47	U	47
3,3'-Dichlorobenzidine	94	U	94
2,6-Dichlorophenol	47	บ	47
2,4-Dichlorophenol	47	บ	47
Diethyl phthalate	· 47	U	47
Dimethoate	47	U	47
7,12-Dimethylbenz(a)anthracene	47	U	47
3,3'-Dimethylbenzidine	94	U	94
2,4-Dimethylphenol	47	U	47
Pimethyl phthalate	47	U	47
-n-butyl phthalate	47	U	47
,3-Dinitrobenzene	47	U	47
4,6-Dinitro-2-methylphenol	240	U	240

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

PMA3M-0906

Lab Sample ID:

680-20272-12

Client Matrix:

Water

Date Sampled:

09/14/2006 1010

Date Received:

09/16/2006 0845

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C 3520C Analysis Batch: 680-56665

Instrument ID:

GC/MS SemiVolatiles - G

Preparation:

Lab File ID:

g6800.d

Dilution:

5.0

Prep Batch: 680-55366

Initial Weight/Volume:

1060 mL

Date Analyzed:

10/05/2006 1113

Final Weight/Volume:

1 mL

Date Prepared:

09/20/2006 0827

Analyte	Result (ug/L)	Qualifier	RL
2,4-Dinitrophenol	240	U	240
2,6-Dinitrotoluene	47	U	47
2,4-Dinitrotoluene	47	ប	47
Di-n-octyl phthalate	47	U	47
Dinoseb	47	ប	47
1,4-Dioxane	47	U	47
Disulfoton	47	U	47
Ethyl methanesulfonate	47	U	47
Famphur	47	U	47
Fluoranthene	47	U	47
Fluorene	47	U	47
łexachlorobenzene	47	Ü	47
Hexachlorobutadiene	47	Ü	47
Hexachlorocyclopentadiene	47	Ü	47
Hexachloroethane	47	บ	47
Hexachlorophene	24000	บ	24000
Hexachloropropene	47	Ŭ	47
Indeno[1,2,3-cd]pyrene	47	บั	47
Isophorone	47	Ü	47
Isosafrole	47	Ü	47
Methapyrilene	9400	ΰ	9400
3-Methylcholanthrene	47	Ŭ	47
Methyl methanesulfonate	47	Ü	47
2-Methylnaphthalene	47	Ü.	47
Methyl parathion	47	Ü	
2-Methylphenol	47	U U	47
3 & 4 Methylphenol	47		47
Naphthalene	47	U	47
		U	47
1,4-Naphthoquinone	47	U	47
1-Naphthylamine	47	U	47
2-Naphthylamine	47	U	47
3-Nitroaniline	240	U	240
2-Nitroaniline	240	U	240
4-Nitroaniline	240	U	240
Nitrobenzene	47	U	47
4-Nitrophenol	240	U	240
2-Nitrophenol	47	U	47
4-Nitroquinoline-1-oxide	94	U	94
N-Nitro-o-toluidine	47	U	47
`-Nitrosodiethylamine	47	U	47
Nitrosodimethylamine	47	U	47
N-Nitrosodi-n-butylamine	47	U	47
N-Nitrosodi-n-propylamine	47	บ	47

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

PMA3M-0906

Lab Sample ID:

680-20272-12

Client Matrix:

Water

Date Sampled:

09/14/2006 1010

Date Received:

09/16/2006 0845

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 680-56665

Instrument ID:

GC/MS SemiVolatiles - G

Preparation:

3520C

Lab File ID:

g6800.d

Dilution:

5.0

Prep Batch: 680-55366

Initial Weight/Volume:

1060 mL

Date Analyzed: Date Prepared:

10/05/2006 1113 09/20/2006 0827

Final Weight/Volume:

1 mL

Injection Volume:

Analyte	Result (ug/L)	Qualifier	RL
N-Nitrosodiphenylamine	47	U	47
N-Nitrosomethylethylamine	47	U	47
N-Nitrosomorpholine	47	Ū	47
N-Nitrosopiperidine	47	Ū	47
N-Nitrosopyrrolidine	47	U	47
o,o',o"-Triethylphosphorothioate	47	U	47
Parathion	47	U	47
p-Dimethylamino azobenzene	47	U	47
Pentachlorobenzene	47	U	47
Pentachloronitrobenzene	47	U.	47
Pentachlorophenol	240	U	240
Phenacetin	47	U	47
Phenanthrene	47	U	47
Phenol	47	U	47
Phorate	47	U	47
2-Picoline	47	υ	47
p-Phenylene diamine	9400	U	9400
Pronamide	47	U	47
Pyrene	47	U .	47
Pyridine	240	U	240
Safrole, Total	47	U	47
Sulfotepp	47	U	47
1,2,4,5-Tetrachlorobenzene	47	U	47
2,3,4,6-Tetrachlorophenol	47	U	47
Thionazin	47	U	47
2-Toluidine	47	บ	47
1,2,4-Trichlorobenzene	47	U	47
2,4,5-Trichlorophenol	47	U	47
2,4,6-Trichlorophenol	47	Ū	47
1,3,5-Trinitrobenzene	47	U	47
1-Chloro-3-nitrobenzene	47	U	47
1-Chloro-4-nitrobenzene	47	Ū	47
1-Chloro-2-nitrobenzene	47	U	47
2-Nitrobiphenyl	47	Ü	47
2,4-Dichloronitrobenzene	47	Ū	47
3-Nitrobiphenyl	47	Ū	 47
3,4-Dichloronitrobenzene	47	Ū	47
4-Nitrobiphenyl	47	Ü	 47
Surrogate	%Rec	Acceptance Limits	
`-Fluorobiphenyl	0	ХD	59 - 103
Fluorophenoi	68		56 - 100
Nitrobenzene-d5	0	ΧD	60 - 102
Phenol-d5	70		55 - 104

STL Savannah

Page 65 of 114

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

PMA3M-0906

Lab Sample ID:

680-20272-12

Client Matrix:

Water

Date Sampled:

09/14/2006 1010

Date Received:

09/16/2006 0845

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 680-56665

instrument ID:

GC/MS SemiVolatiles - G

Preparation:

3520C

Prep Batch: 680-55366

Lab File ID:

g6800.d

Dilution:

5.0

Date Analyzed:

10/05/2006 1113

Initial Weight/Volume: Final Weight/Volume:

1060 mL 1 mL

Date Prepared:

09/20/2006 0827

Injection Volume:

Surrogate %Rec Acceptance Limits Terphenyi-d14 0 ΧD 10 - 154 71 2,4,6-Tribromophenol 55 - 126

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

PMA2M-0906

Lab Sample ID:

680-20272-14

Client Matrix:

Water

Date Sampled:

09/14/2006 1220

Date Received:

09/16/2006 0845

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

Analysis Batch: 680-56665

Instrument ID:

GC/MS SemiVolatiles - G

Preparation:

3520C

Prep Batch: 680-55366

Lab File ID:

g6802.d

Dilution:

5.0

Initial Weight/Volume:

1040 mL

Date Analyzed: Date Prepared:

10/05/2006 1209 09/20/2006 0827

Final Weight/Volume:

1 mL

Analyte	Result (ug/L)	Qualifier	RL
Acenaphthene	48	U	48
Acenaphthylene	48	U	48
Acetophenone	48	U	48
2-Acetylaminofluorene	48	ប	48
alpha,alpha-Dimethyl phenethylamine	9600	U	9600
4-Aminobiphenyl	48	U	48
Aniline	96	υ	96
Anthracene	48	U	48
Aramite, Total	48	U	48
Benzo[a]anthracene	48	U*	48
Benzo[a]pyrene	48	Ü	48
Benzo[b]fluoranthene	48	Ū	48
Benzo[g,h,i]perylene	48	Ū	48
Benzo[k]fluoranthene	48	Ü	48
Benzyl alcohol	48	Ü	48
1,1'-Biphenyl	48	Ū	48
Bis(2-chloroethoxy)methane	48	Ü	48
Bis(2-chloroethyl)ether	48	Ü	48
bis(chloroisopropyl) ether	48	Ü	48
Bis(2-ethylhexyl) phthalate	48	Ū	48
4-Bromophenyl phenyl ether	48	Ū	48
Butyl benzyl phthalate	48	Ü	48
4-Chloroaniline	100		96
4-Chloro-3-methylphenol	48	U	48
2-Chloronaphthalene	48	Ü	48
2-Chlorophenol	48	Ŭ	48
4-Chlorophenyl phenyl ether	48	· Ŭ	48
Chrysene	48	Ŭ	48
Diallate	48	บ	48
Dibenz(a,h)anthracene	48	Ü	48
Dibenzofuran	48	Ü	48
3,3'-Dichlorobenzidine	96	Ŭ	96
2,4-Dichlorophenol	48	Ü	48
2,6-Dichlorophenol	48	U	48
Diethyl phthalate	48	U	48
Dimethoate	48	Ü	
7,12-Dimethylbenz(a)anthracene	48	U	48
3,3'-Dimethylbenzidine	96	U ·	48
2,4-Dimethylphenol	90 48	U	96
Dimethyl phthalate	48 48	U .	48
inetry printate in-butyl phthalate			48
,3-Dinitrobenzene	48	U	48
,3-Dinitroberizene 4,6-Dinitro-2-methylphenol	48	U	48
+,0-0 ини 0-2-т неш угрпеног	240	U	240

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

PMA2M-0906

Lab Sample ID:

680-20272-14

Client Matrix:

Water

Date Sampled:

09/14/2006 1220

Date Received:

09/16/2006 0845

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 680-56665

Instrument ID:

GC/MS SemiVolatiles - G

Preparation:

3520C

Prep Batch: 680-55366

g6802.d Lab File ID:

Dilution:

5.0

Initial Weight/Volume:

1040 mL 1 mL

Date Analyzed: Date Prepared: 10/05/2006 1209 09/20/2006 0827 Final Weight/Volume:

Analyte	Result (ug/L)	Qualifier	RL
2,4-Dinitrophenol	240	U	240
2,6-Dinitrotoluene	48	U	48
2,4-Dinitrotoluene	48	U	48
Di-n-octyl phthalate	48	U	48
Dinoseb	48	U	48′
1,4-Dioxane	48	U	48
Disulfoton	48	U	48
Ethyl methanesulfonate	48	U	48
Famphur	48	บ	48
Fluoranthene	48	U	48
Fluorene	48	ប	48
lexachlorobenzene	48	U	48
Hexachlorobutadiene	48	U	48
Hexachlorocyclopentadiene	48	U	48
Hexachloroethane	48	U	48
Hexachlorophene	24000	ប	24000
Hexachloropropene	48	U	48
Indeno[1,2,3-cd]pyrene	48	U	48
Isophorone	48	บ	48
Isosafrole	48	U	48
Methapyrilene	9600	U	9600
3-Methylcholanthrene	48	U	48
Methyl methanesulfonate	48	U	48
2-Methylnaphthalene	48	ប	48
Methyl parathion	48	U	48
2-Methylphenol	48	U	48
3 & 4 Methylphenol	. 48	U	48
Naphthalene	48	U	48
1,4-Naphthoquinone	48	U	48
1-Naphthylamine	48	Ü	48
2-Naphthylamine	48	Ū	48
3-Nitroaniline	240	Ū	240
2-Nitroaniline	240	Ū	240
4-Nitroaniline	240	Ü	240
Nitrobenzene	48	บ	48
4-Nitrophenol	240	Ü	240
2-Nitrophenol	48	Ü	48
4-Nitroquinoline-1-oxide	96	Ŭ	96
N-Nitro-o-toluidine	48	Ŭ	48
'-Nitrosodiethylamine	48	บ	48
-Nitrosodimethylamine	48	ΰ	48
N-Nitrosodi-n-butylamine	48	ΰ	48
N-Nitrosodi-n-propylamine	48	Ü	48
14-1410 OSOUP I PHOPYICI IIII IC	40		70

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

PMA2M-0906

Lab Sample ID:

680-20272-14

Client Matrix:

Water

Date Sampled:

09/14/2006 1220

Date Received:

09/16/2006 0845

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 680-56665

Instrument ID:

GC/MS SemiVolatiles - G

Preparation:

3520C

Prep Batch: 680-55366

Lab File ID:

g6802.d

Dilution:

5.0

Initial Weight/Volume: Final Weight/Volume:

1040 mL 1 mL

Date Analyzed: Date Prepared:

10/05/2006 1209 09/20/2006 0827

Injection Volume:

Analyte	Result (ug/L)	Qualifier	· RL
N-Nitrosodiphenylamine	48	U	48
N-Nitrosomethylethylamine	48	U	48
N-Nitrosomorpholine	48	U	48
N-Nitrosopiperidine	48	U	48
N-Nitrosopyrrolidine	48	U	48
o,o',o"-Triethylphosphorothioate	48	U	48
Parathion	48	U	48
p-Dimethylamino azobenzene	48	ប	48
Pentachlorobenzene	48	υ	48
Pentachloronitrobenzene	48	U	48
Pentachiorophenol	240	U	240
henacetin	48	Ū	48
nenanthrene	48	Ü	48
Phenol	48	Ü	48
Phorate	48	Ü	48
2-Picoline	48	Ü	48
p-Phenylene diamine	9600	บ	9600
Pronamide	48	Ŭ	48
Pyrene	48	ŭ	48
Pyridine	240	Ŭ	240
Safrole, Total	48	Ü	48
Sulfotepp	48	ŭ	48
1,2,4,5-Tetrachlorobenzene	48	Ŭ·	48
2,3,4,6-Tetrachiorophenol	48	Ŭ	48
Thionazin	48	Ŭ	48
2-Toluidine	48	Ŭ	48
1,2,4-Trichlorobenzene	48	Ü	48
2,4,5-Trichlorophenol	48	Ŭ	48
2,4,6-Trichlorophenol	48	บ	48
1,3,5-Trinitrobenzene	48	Ŭ	48
1-Chloro-3-nitrobenzene	48	Ü	·48
1-Chloro-4-nitrobenzene	48	Ü	48
1-Chloro-2-nitrobenzene	48	ีย	48
2-Nitrobiphenyl	48	Ü	48
2,4-Dichloronitrobenzene	48	Ü	48
	48		
3-Nitrobiphenyl 3,4-Dichloronitrobenzene	46 48	ម ប	48
3,4-Dicnioronitropenzene 4-Nitrobiphenyl	48 48	บ	48 48
Surrogate	%Rec	J	Acceptance Limits
	o J. A. w. M. w. A	V D	
Fluorobiphenyl	0	ΧD	59 - 103
Fluorophenol	. 54	X	56 - 100
Nitrobenzene-d5	0	X D	60 - 102
Phenol-d5	62		55 - 104

Page 69 of 114

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

PMA2M-0906

Lab Sample ID:

680-20272-14

Client Matrix:

Water

Date Sampled:

09/14/2006 1220

Date Received:

09/16/2006 0845

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

3520C

Analysis Batch: 680-56665

Instrument ID:

GC/MS SemiVolatiles - G

Preparation:

Prep Batch: 680-55366

Lab File ID:

Dilution: Date Analyzed:

Date Prepared:

5.0

g6802.d

10/05/2006 1209

09/20/2006 0827

Initial Weight/Volume: Final Weight/Volume:

1040 mL

1 mL

Surrogate	%Rec		Acceptance Limits
Terphenyl-d14	0	ΧD	. 10 - 154
2,4,6-Tribromophenol	81		55 - 126

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

PMA2S-0906-EB

Lab Sample ID:

680-20272-16

Client Matrix:

Water

Date Sampled:

09/14/2006 1400

Date Received:

09/16/2006 0845

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 680-56661

Instrument ID:

GC/MS SemiVolatiles - G

Preparation:

3520C

Prep Batch: 680-55366

Lab File ID:

g5681.d

Dilution:

1.0

Initial Weight/Volume:

1060 mL

Date Analyzed:

09/30/2006 0202

Final Weight/Volume:

1 mL

Date Prepared:

09/20/2006 0827

Analyte	Result (ug/L)	Qualifier	RL
Acenaphthene	9.4	U	9.4
Acenaphthylene	9.4	U	9.4
Acetophenone	9.4	ប	9.4
2-Acetylaminofluorene	9.4	U	9.4
alpha,alpha-Dimethyl phenethylamine	1900	U	1900
4-Aminobiphenyl	9.4	U	9.4
Aniline	19	U	19
Anthracene	9.4	U	9.4
Aramite, Total	9.4	U	9.4
Benzo[a]anthracene	9.4	U*	9.4
Benzo[a]pyrene	9.4	U	9.4
enzo[b]fluoranthene	9.4	U	9.4
penzo[g,h,i]perylene	9.4	U	9.4
Benzo[k]fluoranthene	9.4	U	9.4
Benzyl alcohol	9.4	U	9.4
1,1'-Biphenyl	9.4	U	9.4
Bis(2-chloroethoxy)methane	9.4	. U	9.4
Bis(2-chloroethyl)ether	9.4	บ	9.4
bis(chloroisopropyl) ether	9.4	U	9.4
Bis(2-ethylhexyl) phthalate	9.4	U	9.4
4-Bromophenyl phenyl ether	9.4	U	9.4
Butyl benzyl phthalate	9.4	U	9.4
4-Chloroaniline	19	U	19
4-Chloro-3-methylphenol	9.4	U	9.4
2-Chloronaphthalene	9.4	U	9.4
2-Chlorophenol	9.4	U	9.4
4-Chlorophenyl phenyl ether	9.4	U	9.4
Chrysene	9.4	บ	9.4
Diallate	9.4	U	9.4
Dibenz(a,h)anthracene	9.4	บ	9.4
Dibenzofuran	9.4	บ	9.4
3,3'-Dichlorobenzidine	19	U	19
2,4-Dichlorophenol	9.4	υ	9.4
2,6-Dichlorophenol	9.4	ប	9.4
Diethyl phthalate	9.4	υ	9.4
Dimethoate	9.4	ប	9.4
7,12-Dimethylbenz(a)anthracene	9.4	ប	9.4
3,3'-Dimethylbenzidine	19	U	19
2,4-Dimethylphenol	9.4	U	9.4
Pimethyl phthalate	9.4	U	9.4
n-butyl phthalate	9.4	U	9.4
,,3-Dinitrobenzene	9.4	U	9.4
4,6-Dinitro-2-methylphenol	47	U	47

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

PMA2S-0906-EB

Lab Sample ID:

680-20272-16

Client Matrix:

Water

Date Sampled:

09/14/2006 1400

Date Received:

09/16/2006 0845

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 680-56661

Instrument ID:

GC/MS SemiVolatiles - G

Preparation:

3520C

Prep Batch: 680-55366

Lab File ID:

q5681.d

Dilution:

1.0

Initial Weight/Volume:

1060 mL

Date Analyzed: Date Prepared: 09/30/2006 0202 09/20/2006 0827 Final Weight/Volume:

1 mL

Analyte	Result (ug/L)	Qualifier	RL .
2,4-Dinitrophenol	47	U	47
2,6-Dinitrotoluene	9.4	U	9.4
2,4-Dinitrotoluene	9.4	U	9.4
Di-n-octyl phthalate	9.4	U	9.4
Dinoseb	9.4	U	9.4
1,4-Dioxane	9.4	U	9.4
Disulfoton	9.4	U	9.4
Ethyl methanesulfonate	9.4	U	9.4
Famphur	9.4	U	9.4
Fluoranthene	9.4	U	9.4
Fluorene	9.4	U	9.4
lexachlorobenzene	9.4	U	9.4
Hexachlorobutadiene	9.4	U	9.4
Hexachlorocyclopentadiene	9.4	U	9.4
Hexachloroethane	9.4	ប	9.4
Hexachlorophene	4700	U	4700
Hexachloropropene	9.4	IJ	9.4
Indeno[1,2,3-cd]pyrene	9.4	U ·	9.4
Isophorone	9.4	U	9.4
Isosafrole	9.4	U	9.4
Methapyrilene	1900	U	1900
3-Methylcholanthrene	9.4	ប	9.4
Methyl methanesulfonate	9.4	U	9.4
2-Methylnaphthalene	9.4	U	9.4
Methyl parathion	9.4	U	9.4
2-Methylphenol	9.4	บ	9.4
3 & 4 Methylphenol	9.4	· U	9.4
Naphthalene	9.4	U	9.4
1,4-Naphthoquinone	9.4	U	9.4
1-Naphthylamine	9.4	U	9.4
2-Naphthylamine	9.4	บ	9.4
3-Nitroaniline	47	ប	47
2-Nitroaniline	47	U	47
4-Nitroaniline	47	U	47
Nitrobenzene	9.4	U	9.4
4-Nitrophenol	47	U	47
2-Nitrophenol	9.4	U	9.4
4-Nitroquinoline-1-oxide	19	U	19
N-Nitro-o-toluidine	9.4	U	9.4
'-Nitrosodiethylamine	9.4	U	9.4
-Nitrosodimethylamine	9.4	U	9.4
N-Nitrosodi-n-butylamine	9.4	U	9.4
N-Nitrosodi-n-propylamine	9.4	U	9.4

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

PMA2S-0906-EB

Lab Sample ID:

680-20272-16

Client Matrix:

Water

Date Sampled:

09/14/2006 1400

Date Received:

09/16/2006 0845

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 680-56661

Instrument ID:

GC/MS SemiVolatiles - G

Preparation:

3520C

Prep Batch: 680-55366

Lab File ID:

g5681.d

Dilution:

1.0

Initial Weight/Volume:

1060 mL

Date Analyzed: Date Prepared:

09/30/2006 0202 09/20/2006 0827

Final Weight/Volume:

60 - 102

55 - 104

1 mL

Injection Volume:

Analyte	Result (ug/L)	Qualifier	RL
N-Nitrosodiphenylamine	9.4	U	9.4
N-Nitrosomethylethylamine	9.4	ប	9.4
N-Nitrosomorpholine	9.4	U	9.4
N-Nitrosopiperidine	9.4	U	9.4
N-Nitrosopyrrolidine	9.4	บ	9.4
o,o',o"-Triethylphosphorothioate	9.4	U	9.4
Parathion	9.4	U	9.4
p-Dimethylamino azobenzene	9.4	U	9.4
Pentachlorobenzene	9.4	U	9.4
Pentachloronitrobenzene	9.4	U	9.4
Pentachlorophenol	47	U	47
henacetin	9.4	Ū	9.4
henanthrene	9.4	Ü	9.4
Phenol	9.4	Ū	9.4
Phorate	9.4	Ū	9.4
2-Picoline	9.4	Ū	9.4
p-Phenylene diamine	1900	Ü	1900
Pronamide	9.4	Ü	9.4
Pyrene	9.4	Ü	9.4
Pyridine	47	Ū	47
Safrole, Total	9.4	Ü	9.4
Sulfotepp	9.4	Ü	9.4
1,2,4,5-Tetrachlorobenzene	9.4	Ū	9.4
2,3,4,6-Tetrachlorophenol	9.4	ับ	9.4
Thionazin	9.4	Ü	9.4
2-Toluidine	9.4	Ü	9.4
1,2,4-Trichlorobenzene	9.4	Ŭ	9.4
2,4,5-Trichlorophenol	9.4	Ŭ	9.4
2,4,6-Trichlorophenol	9.4	Ŭ	9.4
1,3,5-Trinitrobenzene	9.4	Ü	9.4
1-Chloro-3-nitrobenzene	9.4	บั	9.4
1-Chloro-4-nitrobenzene	9.4	บั	9.4
1-Chloro-2-nitrobenzene	9.4	ΰ	9.4
2-Nitrobiphenyl	9.4	Ŭ	9.4
2,4-Dichloronitrobenzene	9.4	Ü	9.4
3-Nitrobiphenyl	9.4	Ü	9.4
3,4-Dichloronitrobenzene	9.4	บั	9.4
4-Nitrobiphenyl	9.4	ŭ	9.4
Surrogate	%Rec	Acceptance Limits	
Fluorobiphenyl	65		59 - 103
Fluorophenol	67		56 - 100

Page 73 of 114

73

75

STL Savannah

Phenol-d5

Nitrobenzene-d5

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

PMA2S-0906-EB

Lab Sample ID:

680-20272-16

Client Matrix:

Water

Date Sampled:

09/14/2006 1400

Date Received:

09/16/2006 0845

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 680-56661

Instrument ID:

GC/MS SemiVolatiles - G

Preparation:

3520C

Prep Batch: 680-55366

Lab File ID:

g5681.d

Dilution: Date Analyzed: Date Prepared:

1.0

Initial Weight/Volume:

1060 mL

Final Weight/Volume:

1 mL

Injection Volume:

Surrogate

09/20/2006 0827

09/30/2006 0202

%Rec

Acceptance Limits

Terphenyl-d14 2,4,6-Tribromophenol 104 74

10 - 154 55 - 126

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

PMA2S-0906

Lab Sample ID:

680-20272-18

Client Matrix:

Water

Date Sampled:

09/14/2006 1525

Date Received:

09/16/2006 0845

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 680-56661

Instrument ID:

GC/MS SemiVolatiles - G

Preparation:

3520C

Lab File ID:

g5682.d

Dilution:

1.0

Prep Batch: 680-55366

Initial Weight/Volume:

1040 mL 1 mL

Date Analyzed: Date Prepared: 09/30/2006 0232 09/20/2006 0827

Final Weight/Volume:

Analyte	Result (ug/L)	Qualifier	RL
Acenaphthene	9.6	U	9.6
Acenaphthylene	9.6	U	9.6
Acetophenone	9.6	Ú	9.6
2-Acetylaminofluorene	9.6	U	9.6
alpha,alpha-Dimethyl phenethylamine	1900	U	1900
4-Aminobiphenyl	9.6	U	9.6
Aniline	19	U	19
Anthracene	9.6	U	9.6
Aramite, Total	9.6	U	9.6
Benzo[a]anthracene	9.6	U * `	9.6
Benzo[a]pyrene	9.6	U	9.6
enzo[b]fluoranthene	9.6	U	9.6
Benzo[g,h,i]perylene	9.6	U	9.6
Benzo[k]fluoranthene	9.6	U	9.6
Benzyl alcohol	9.6	U	9.6
1,1'-Biphenyl	9.6	U	9.6
Bis(2-chloroethoxy)methane	9.6	ሀ	9.6
Bis(2-chloroethyl)ether	9.6	U	9.6
bis(chloroisopropyl) ether	9.6	U	9.6
Bis(2-ethylhexyl) phthalate	9.6	U	9.6
4-Bromophenyl phenyl ether	9.6	U	9.6
Butyl benzyl phthalate	9.6	U	9.6
4-Chloroaniline	19	U	19
4-Chloro-3-methylphenol	9.6	U	9.6
2-Chloronaphthalene	9.6	U	9.6
2-Chlorophenol	9.6	U	9.6
4-Chlorophenyl phenyl ether	9.6	υ	9.6
Chrysene	9.6	V	9.6
Diallate	9.6	ប	9.6
Dibenz(a,h)anthracene	9.6	U	9.6
Dibenzofuran	9.6	Ü	9.6
3,3'-Dichlorobenzidine	19	U	19
2,4-Dichlorophenol	9.6	U	9.6
2,6-Dichlorophenol	9.6	Ū	9.6
Diethyl phthalate	9.6	Ū	9.6
Dimethoate	9.6	Ū	9.6
7,12-Dimethylbenz(a)anthracene	9.6	Ü	9.6
3,3'-Dimethylbenzidine	19	. ບັ	19
2,4-Dimethylphenol	9.6	Ü	9.6
Dimethyl phthalate	9.6	Ü	9.6
i-n-butyl phthalate	9.6	Ŭ	9.6
,3-Dinitrobenzene	9.6	Ŭ	9.6
4,6-Dinitro-2-methylphenol	48	Ü	48

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

PMA2S-0906

Lab Sample ID:

680-20272-18

Client Matrix:

Water

Date Sampled:

09/14/2006 1525

Date Received:

09/16/2006 0845

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 680-56661

Instrument ID:

GC/MS SemiVolatiles - G

Preparation:

3520C

Prep Batch: 680-55366

Lab File ID:

g5682.d

Dilution:

1.0

Initial Weight/Volume:

1040 mL

Date Analyzed: Date Prepared: 09/30/2006 0232

09/20/2006 0827

Final Weight/Volume:

1 mL

Analyte	Result (ug/L)	Qualifier	RL
2,4-Dinitrophenol	48	U	48
2,6-Dinitrotoluene	9.6	ប	9.6
2,4-Dinitrotoluene	9.6	U	9.6
Di-n-octyl phthalate	9.6	U	9.6
Dinoseb	9.6	U	9.6
1,4-Dioxane	9.6	U	9.6
Disulfoton	9.6	U	9.6
Ethyl methanesulfonate	9.6	U	9.6
Famphur	9.6	U	9.6
Fluoranthene	9.6	U	9.6
Fluorene	9.6	U	9.6
lexachlorobenzene	· 9.6	U	9.6
Hexachlorobutadiene	9.6	U	9.6
Hexachlorocyclopentadiene	9.6	U	9.6
Hexachloroethane	9.6	U	9.6
Hexachlorophene	4800	U	4800
Hexachloropropene	9.6	U	9.6
Indeno[1,2,3-cd]pyrene	9.6	U	9.6
Isophorone	9.6	U	9.6
Isosafrole	9.6	U	9.6
Methapyrilene	1900	U	1900
3-Methylcholanthrene	9.6	U	9.6
Methyl methanesulfonate	9.6	U	9.6
2-Methylnaphthalene	9.6	U	9.6
Methyl parathion	9.6	υ	9.6
2-Methylphenol	9.6	U	9.6
3 & 4 Methylphenol	9.6	U	9.6
Naphthalene	9.6	U	9.6
1,4-Naphthoquinone	9.6	U	9.6
1-Naphthylamine	9.6	U	9.6
2-Naphthylamine	9.6	U	9.6
3-Nitroaniline	48	U	48
2-Nitroaniline	48	U	48
4-Nitroaniline	48	U	48
Nitrobenzene	9.6	υ	9.6
4-Nitrophenol	48	U	48
2-Nitrophenol	9.6	U	9.6
4-Nitroquinoline-1-oxide	19	U	19
N-Nitro-o-toluidine	9.6	ប	9.6
N-Nitrosodiethylamine	9.6	U	9.6
-Nitrosodimethylamine	9.6	U	9.6
N-Nitrosodi-n-butylamine	9.6	U	9.6
N-Nitrosodi-n-propylamine	9.6	U	9.6

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

PMA2S-0906

Lab Sample ID:

680-20272-18

Client Matrix:

Water

Date Sampled:

09/14/2006 1525

Date Received:

09/16/2006 0845

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 680-56661

Instrument ID:

GC/MS SemiVolatiles - G

Preparation:

Lab File ID:

g5682.d

Analyte

3520C

Prep Batch: 680-55366

Result (ug/L)

1040 mL

RL

Dilution: Date Analyzed: 1.0

Initial Weight/Volume:

Qualifier

Final Weight/Volume: 1 mL

> 59 - 103 56 - 100

60 - 102

55 - 104

Date Prepared:

09/30/2006 0232 09/20/2006 0827

Injection Volume:

U 9.6 N-Nitrosodiphenylamine 9.6 9.6 U 9.6 N-Nitrosomethylethylamine N-Nitrosomorpholine 9.6 U 9.6 N-Nitrosopiperidine 9.6 U 9.6 N-Nitrosopyrrolidine 9.6 U 9.6 o,o',o"-Triethylphosphorothioate 9.6 U 9.6 Parathion 9.6 U 9.6 p-Dimethylamino azobenzene 9.6 U 9.6 Pentachlorobenzene 9.6 U 9.6 Pentachloronitrobenzene 9.6 U 9.6 48 U 48 Pentachlorophenol 9.6 U 9.6 Phenacetin 9.6 U 9.6 Phenanthrene 9.6 U 9.6 Phenol Phorate 9.6 U 9.6 U 9.6 2-Picoline 9.6 1900 U 1900 p-Phenylene diamine 9.6 9.6 U Pronamide 9.6 9.6 U Pyrene 48 U 48 Pyridine Safrole, Total 9.6 U 9.6 9.6 U 9.6 Sulfotepp 9.6 U 9.6 1,2,4,5-Tetrachiorobenzene U 9.6 2,3,4,6-Tetrachlorophenol 9.6 U 9.6 9.6 Thionazin U 9.6 9.6 2-Toluidine 9.6 U 9.6 1,2,4-Trichlorobenzene U 9.6 2,4,5-Trichlorophenol 9.6 υ 9.6 2.4.6-Trichlorophenol 9.6 U 9.6 1.3.5-Trinitrobenzene 9.6 U 1-Chloro-3-nitrobenzene 9.6 9.6 Ü 1-Chloro-4-nitrobenzene 9.6 9.6 9.6 U 9.6 1-Chloro-2-nitrobenzene 2-Nitrobiphenyl 9.6 U 9.6 2.4-Dichloronitrobenzene 9.6 U 9.6 U 9.6 3-Nitrobiphenyl 9.6 U 9.6 3,4-Dichloronitrobenzene 9.6 U 9.6 9.6 4-Nitrobiphenyl %Rec Acceptance Limits Surrogate

Page 77 of 114

77

78

80

85

Phenol-d5

:-Fluorobiphenyl

2-Fluorophenol

Nitrobenzene-d5

Client: Solutia Inc.

Job Number: 680-20272-1

Sdg Number: KPM003

Client Sample ID:

PMA2S-0906

Lab Sample ID:

680-20272-18

09/30/2006 0232

09/20/2006 0827

Client Matrix:

Water

Date Sampled:

09/14/2006 1525

Date Received:

09/16/2006 0845

8270C Semivolatile Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)

Method:

8270C

Analysis Batch: 680-56661

Instrument ID:

GC/MS SemiVolatiles - G

3520C Preparation:

Prep Batch: 680-55366

Lab File ID:

g5682.d

Dilution: Date Analyzed:

Date Prepared:

1.0

Acceptance Limits

10 - 154

55 - 126

Initial Weight/Volume: Final Weight/Volume:

1040 mL 1 mL

Injection Volume:

%Rec Surrogate Terphenyl-d14 107 83 2,4,6-Tribromophenol